IDEAS home Printed from https://ideas.repec.org/p/ctl/louvec/2005044.html
   My bibliography  Save this paper

Temporal aggregaton of univariate linear time series models

Author

Listed:
  • Andrea, SILVESTRINI

Abstract

In this paper we feature state-of-the-art econometric methodology of temporal aggregation for univariate linear time series, namely ARIMA-GARCH models. We present a unified overview of temporal aggregation techniques for this broad class of processes and we explain in detail, although intuitively, the technical machinery behind the results. An empirical application with Belgian public deficit data illustrates the main issues.

Suggested Citation

  • Andrea, SILVESTRINI, 2005. "Temporal aggregaton of univariate linear time series models," Discussion Papers (ECON - Département des Sciences Economiques) 2005044, Université catholique de Louvain, Département des Sciences Economiques.
  • Handle: RePEc:ctl:louvec:2005044
    as

    Download full text from publisher

    File URL: http://sites.uclouvain.be/econ/DP/IRES/2005-44.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. HAFNER, Christian & ROMBOUTS, Jeroen, 2003. "Estimation of temporally aggregated multivariate GARCH models," LIDAM Discussion Papers CORE 2003073, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    3. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    4. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    5. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    6. Nijman, Theo E & Palm, Franz C, 1990. "Predictive Accuracy Gain from Disaggregate Sampling in ARIMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(4), pages 405-415, October.
    7. Tommaso Proietti, 2004. "On the Estimation of Nonlinearly Aggregated Mixed Models," Econometrics 0411012, University Library of Munich, Germany.
    8. Hafner, Christian M., 2008. "Temporal aggregation of multivariate GARCH processes," Journal of Econometrics, Elsevier, vol. 142(1), pages 467-483, January.
    9. Theo Nijman & Franz Palm, 1990. "Parameter Identification In Arma Processes In The Presence Of Regular But Incomplete Sampling," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(3), pages 239-248, May.
    10. L. K. Hotta & J. Cardosc Neto, 1993. "The Effect Of Aggregation On Prediction In Autoregressive Integrated Moving‐Average Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(3), pages 261-269, May.
    11. Daniel O. Stram & William W. S. Wei, 1986. "Temporal Aggregation In The Arima Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(4), pages 279-292, July.
    12. William W. S. Wei, 1978. "Some Consequences of Temporal Aggregation in Seasonal Time Series Models," NBER Chapters, in: Seasonal Analysis of Economic Time Series, pages 433-448, National Bureau of Economic Research, Inc.
    13. Òscar Jordà & Massimiliano Marcellino, 2004. "Time‐scale transformations of discrete time processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 873-894, November.
    14. Jörg Breitung & Norman R. Swanson, 2002. "Temporal aggregation and spurious instantaneous causality in multiple time series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(6), pages 651-665, November.
    15. MOULIN, Laurent & SALTO, Matteo & SILVESTRINI, Andrea & VEREDAS, David, 2004. "Using intra annual information to forecast the annual state deficits : the case of France," LIDAM Discussion Papers CORE 2004048, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    17. Granger, C. W. J., 1987. "Implications of Aggregation with Common Factors," Econometric Theory, Cambridge University Press, vol. 3(2), pages 208-222, April.
    18. Weiss, Andrew A., 1984. "Systematic sampling and temporal aggregation in time series models," Journal of Econometrics, Elsevier, vol. 26(3), pages 271-281, December.
    19. Clive W. J. Granger, 1988. "Aggregation of time series variables-a survey," Discussion Paper / Institute for Empirical Macroeconomics 1, Federal Reserve Bank of Minneapolis.
    20. Oscar Jordà & Massimiliano Marcellino, 2004. "Time-scale transformations of discrete time processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 873-894, November.
    21. Palm, Franz C & Nijman, Theo E, 1984. "Missing Observations in the Dynamic Regression Model," Econometrica, Econometric Society, vol. 52(6), pages 1415-1435, November.
    22. Drost, Feike C. & Werker, Bas J. M., 1996. "Closing the GARCH gap: Continuous time GARCH modeling," Journal of Econometrics, Elsevier, vol. 74(1), pages 31-57, September.
    23. Marcellino, Massimiliano, 1999. "Some Consequences of Temporal Aggregation in Empirical Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 129-136, January.
    24. Clive Granger & Tae-Hwy Lee, 1999. "The effect of aggregation on nonlinearity," Econometric Reviews, Taylor & Francis Journals, vol. 18(3), pages 259-269.
    25. Yue Fang & Sergio G. Koreisha, 2004. "Updating ARMA predictions for temporal aggregates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(4), pages 275-296.
    26. Lutkepohl, Helmut, 1984. "Forecasting Contemporaneously Aggregated Vector ARMA Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(3), pages 201-214, July.
    27. Nijman, T.E. & Palm, F.C., 1990. "Parameter identification in ARMA processes in the presence of regular but incomplete sampling," Other publications TiSEM 708ee84d-487f-48a4-8169-0, Tilburg University, School of Economics and Management.
    28. Luiz Hotta & Pedro Pereira & Rissa Ota, 2004. "Effect of outliers on forecasting temporally aggregated flow variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 371-402, December.
    29. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. MOULIN, Laurent & SALTO, Matteo & SILVESTRINI, Andrea & VEREDAS, David, 2004. "Using intra annual information to forecast the annual state deficits : the case of France," LIDAM Discussion Papers CORE 2004048, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Andrea Silvestrini & Matteo Salto & Laurent Moulin & David Veredas, 2008. "Monitoring and forecasting annual public deficit every month: the case of France," Empirical Economics, Springer, vol. 34(3), pages 493-524, June.
    3. Phillip A. Cartwright & Natalija Riabko, 2019. "Do spot food commodity and oil prices predict futures prices?," Review of Quantitative Finance and Accounting, Springer, vol. 53(1), pages 153-194, July.
    4. Andrea Silvestrini & David Veredas, 2008. "Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.
    5. Cartwright, Phillip A. & Riabko, Natalija, 2015. "Measuring the effect of oil prices on wheat futures prices," Research in International Business and Finance, Elsevier, vol. 33(C), pages 355-369.
    6. Phillip A. Cartwright & Natalija Riabko, 2016. "Further evidence on the explanatory power of spot food and energy commodities market prices for futures prices," Review of Quantitative Finance and Accounting, Springer, vol. 47(3), pages 579-605, October.
    7. Giacomo Sbrana, 2012. "Aggregation and marginalization of GARCH processes: some further results," METRON, Springer;Sapienza Università di Roma, vol. 70(2), pages 165-172, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Silvestrini & David Veredas, 2008. "Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.
    2. Nicholas Taylor, 2008. "The predictive value of temporally disaggregated volatility: evidence from index futures markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 721-742.
    3. Sbrana, Giacomo & Silvestrini, Andrea, 2013. "Aggregation of exponential smoothing processes with an application to portfolio risk evaluation," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1437-1450.
    4. Hafner, Christian M., 2008. "Temporal aggregation of multivariate GARCH processes," Journal of Econometrics, Elsevier, vol. 142(1), pages 467-483, January.
    5. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    6. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    7. Helmut Lütkepohl, 2010. "Forecasting Aggregated Time Series Variables: A Survey," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(2), pages 1-26.
    8. Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
    9. Adlai Fisher & Laurent Calvet & Benoit Mandelbrot, 1997. "Multifractality of Deutschemark/US Dollar Exchange Rates," Cowles Foundation Discussion Papers 1166, Cowles Foundation for Research in Economics, Yale University.
    10. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    11. Alexandre Petkovic & David Veredas, 2009. "Aggregation of linear models for panel data," Working Papers ECARES 2009-012, ULB -- Universite Libre de Bruxelles.
    12. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    13. Mamingi Nlandu, 2017. "Beauty and Ugliness of Aggregation over Time: A Survey," Review of Economics, De Gruyter, vol. 68(3), pages 205-227, December.
    14. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    15. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    16. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    17. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
    18. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    19. Maria Nikoloudaki & Dikaios Tserkezos, 2008. "Temporal Aggregation Effects in Choosing the Optimal Lag Order in Stable ARMA Models: Some Monte Carlo Results," Working Papers 0822, University of Crete, Department of Economics.
    20. Ramirez, Octavio A., 2011. "Conclusive Evidence on the Benefits of Temporal Disaggregation to Improve the Precision of Time Series Model Forecasts," Faculty Series 113520, University of Georgia, Department of Agricultural and Applied Economics.

    More about this item

    Keywords

    Temporal aggregation; ARIMA; GARCH; seasonality;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ctl:louvec:2005044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Virginie LEBLANC (email available below). General contact details of provider: https://edirc.repec.org/data/iruclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.