IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8124-d959377.html
   My bibliography  Save this article

Deep Learning-Based Methods for Forecasting Brent Crude Oil Return Considering COVID-19 Pandemic Effect

Author

Listed:
  • Seyed Mehrzad Asaad Sajadi

    (Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran 15914, Iran)

  • Pouya Khodaee

    (Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran 15914, Iran)

  • Ehsan Hajizadeh

    (Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran 15914, Iran)

  • Sabri Farhadi

    (Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran 15914, Iran)

  • Sohaib Dastgoshade

    (Department of Industrial Engineering, Yazd University, Yazd 89195, Iran)

  • Bo Du

    (SMART Infrastructure Facility, University of Wollongong, Wollongong, NSW 2522, Australia)

Abstract

Forecasting return and profit is a primary challenge for financial practitioners and an even more critical issue when it comes to forecasting energy market returns. This research attempts to propose an effective method to predict the Brent Crude Oil return, which results in remarkable performance compared with the well-known models in the return prediction. The proposed hybrid model is based on long short-term memory (LSTM) and convolutional neural network (CNN) networks where the autoregressive integrated moving average (ARIMA) and generalized autoregressive conditional heteroscedasticity (GARCH) outputs are used as features, along with return lags, price, and macroeconomic variables to train the models, resulting in significant improvement in the model’s performance. According to the obtained results, our proposed model performs better than other models, including artificial neural network (ANN), principal component analysis (PCA)-ANN, LSTM, and CNN. We show the efficiency of our proposed model by testing it with a simple trading strategy, indicating that the cumulative profit obtained from trading with the prediction results of the proposed 2D CNN-LSTM model is higher than those of the other models presented in this research. In the second part of this study, we consider the spread of COVID-19 and its impact on the financial markets to present a precise LSTM model that can reflect the impact of this disease on the Brent Crude Oil return. This paper uses the significance test and correlation measures to show the similarity between the series of Brent Crude Oil during the SARS and the COVID-19 pandemics, after which the data during the SARS period are used along with the data during COVID-19 to train the LSTM. The results demonstrate that the proposed LSTM model, tuned by the SARS data, can better predict the Brent Crude Oil return during the COVID-19 pandemic.

Suggested Citation

  • Seyed Mehrzad Asaad Sajadi & Pouya Khodaee & Ehsan Hajizadeh & Sabri Farhadi & Sohaib Dastgoshade & Bo Du, 2022. "Deep Learning-Based Methods for Forecasting Brent Crude Oil Return Considering COVID-19 Pandemic Effect," Energies, MDPI, vol. 15(21), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8124-:d:959377
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Yang K. & Perron, Pierre, 2010. "Modeling and forecasting stock return volatility using a random level shift model," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
    2. Cao, Jian & Li, Zhi & Li, Jian, 2019. "Financial time series forecasting model based on CEEMDAN and LSTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 127-139.
    3. Deepak Gupta & Mahardhika Pratama & Zhenyuan Ma & Jun Li & Mukesh Prasad, 2019. "Financial time series forecasting using twin support vector regression," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-27, March.
    4. Chen, Chun-Hung & Yu, Wei-Choun & Zivot, Eric, 2012. "Predicting stock volatility using after-hours information: Evidence from the NASDAQ actively traded stocks," International Journal of Forecasting, Elsevier, vol. 28(2), pages 366-383.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Perez-Rodriguez, Jorge V. & Torra, Salvador & Andrada-Felix, Julian, 2005. "STAR and ANN models: forecasting performance on the Spanish "Ibex-35" stock index," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 490-509, June.
    7. Racine, Jeffrey, 2001. "On the Nonlinear Predictability of Stock Returns Using Financial and Economic Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 380-382, July.
    8. Leandro Maciel & Fernando Gomide & Rosangela Ballini, 2016. "Evolving Fuzzy-GARCH Approach for Financial Volatility Modeling and Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 48(3), pages 379-398, October.
    9. Melike Bildirici & Nilgun Guler Bayazit & Yasemen Ucan, 2020. "Analyzing Crude Oil Prices under the Impact of COVID-19 by Using LSTARGARCHLSTM," Energies, MDPI, vol. 13(11), pages 1-18, June.
    10. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    11. Mendes, Beatriz Vaz de Melo & Lavrado, Rafael Coelho, 2017. "Implementing and testing the Maximum Drawdown at Risk," Finance Research Letters, Elsevier, vol. 22(C), pages 95-100.
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    13. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    14. Hao Sun & Bo Yu, 2020. "Forecasting Financial Returns Volatility: A GARCH-SVR Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 451-471, February.
    15. Lam, Keith S.K. & Tam, Lewis H.K., 2011. "Liquidity and asset pricing: Evidence from the Hong Kong stock market," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2217-2230, September.
    16. Geleta T. Mohammed & Jane A. Aduda & Ananda O. Kube & Pierpaolo D’Urso, 2020. "Improving Forecasts of the EGARCH Model Using Artificial Neural Network and Fuzzy Inference System," Journal of Mathematics, Hindawi, vol. 2020, pages 1-14, June.
    17. Hamid, Shaikh A. & Iqbal, Zahid, 2004. "Using neural networks for forecasting volatility of S&P 500 Index futures prices," Journal of Business Research, Elsevier, vol. 57(10), pages 1116-1125, October.
    18. Viviane Naimy & Omar Haddad & Gema Fernández-Avilés & Rim El Khoury, 2021. "The predictive capacity of GARCH-type models in measuring the volatility of crypto and world currencies," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-17, January.
    19. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    20. Elżbieta Szaruga & Zuzanna Kłos-Adamkiewicz & Agnieszka Gozdek & Elżbieta Załoga, 2021. "Linkages between Energy Delivery and Economic Growth from the Point of View of Sustainable Development and Seaports," Energies, MDPI, vol. 14(14), pages 1-61, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:zbw:rwirep:0243 is not listed on IDEAS
    2. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    3. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    4. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    5. Caporin, Massimiliano & Preś, Juliusz & Torro, Hipolit, 2012. "Model based Monte Carlo pricing of energy and temperature Quanto options," Energy Economics, Elsevier, vol. 34(5), pages 1700-1712.
    6. Belke, Ansgar & Gokus, Christian, 2011. "Volatility Patterns of CDS, Bond and Stock Markets Before and During the Financial Crisis – Evidence from Major Financial Institutions," Ruhr Economic Papers 243, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    7. Gatfaoui, Hayette, 2013. "Translating financial integration into correlation risk: A weekly reporting's viewpoint for the volatility behavior of stock markets," Economic Modelling, Elsevier, vol. 30(C), pages 776-791.
    8. Javier Sánchez García & Salvador Cruz Rambaud, 2022. "A GARCH approach to model short‐term interest rates: Evidence from Spanish economy," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1621-1632, April.
    9. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    10. Chen, Yufeng & Xu, Jing & Hu, May, 2022. "Asymmetric volatility spillovers and dynamic correlations between crude oil price, exchange rate and gold price in BRICS," Resources Policy, Elsevier, vol. 78(C).
    11. Chen, Xiaoyu & Chiang, Thomas C., 2016. "Stock returns and economic forces—An empirical investigation of Chinese markets," Global Finance Journal, Elsevier, vol. 30(C), pages 45-65.
    12. Van Cauwenberge, Annelies & Vancauteren, Mark & Braekers, Roel & Vandemaele, Sigrid, 2019. "International trade, foreign direct investments, and firms’ systemic risk : Evidence from the Netherlands," Economic Modelling, Elsevier, vol. 81(C), pages 361-386.
    13. Das, Suman & Roy, Saikat Sinha, 2023. "Following the leaders? A study of co-movement and volatility spillover in BRICS currencies," Economic Systems, Elsevier, vol. 47(2).
    14. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
    15. Cristina Amado & Annastiina Silvennoinen & Timo Teräsvirta, 2018. "Models with Multiplicative Decomposition of Conditional Variances and Correlations," CREATES Research Papers 2018-14, Department of Economics and Business Economics, Aarhus University.
    16. Ansgar Belke & Christian Gokus, 2011. "Volatility Patterns of CDS, Bond and Stock Markets Before and During the Financial Crisis – Evidence from Major Financial Institutions," Ruhr Economic Papers 0243, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    17. ÖZGÜR, Onur & BISIN, Alberto, 2011. "Dynamic Linear Economies with Social Interactions," Cahiers de recherche 04-2011, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    18. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    19. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
    20. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8124-:d:959377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.