IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v445y2023ics0096300323000450.html
   My bibliography  Save this article

Application of the dynamic Monte Carlo method to pedestrian evacuation dynamics

Author

Listed:
  • Tamang, Nutthavuth
  • Sun, Yi

Abstract

In this study, we investigate a two-dimensional lattice model for crowd evacuation dynamics by using a dynamic Monte Carlo (DMC) method. This model is built on the microscopic Arrhenius dynamics along with the exclusion rule in which stochastic processes govern the individual movements depending on the relative distance to the room exit. Even though individual decision-making procedures can be complicated during the evacuation in an emergency, our model can quantitatively estimate the time for them to evacuate and predict the emerging patterns of the crowds during the process. The results exhibit the phenomena such that pedestrians spontaneously gather at the exit and form an arched shape close to the door. The DMC simulations and observations agree with the corresponding study in the literature. The DMC algorithm is computationally efficient due to its major property —“rejection-free”, which makes it a suitable tool to simulate evacuation dynamics for a large group of pedestrians.

Suggested Citation

  • Tamang, Nutthavuth & Sun, Yi, 2023. "Application of the dynamic Monte Carlo method to pedestrian evacuation dynamics," Applied Mathematics and Computation, Elsevier, vol. 445(C).
  • Handle: RePEc:eee:apmaco:v:445:y:2023:i:c:s0096300323000450
    DOI: 10.1016/j.amc.2023.127876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323000450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.127876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jinhuan & Zhang, Lei & Shi, Qiongyu & Yang, Peng & Hu, Xiaoming, 2015. "Modeling and simulating for congestion pedestrian evacuation with panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 396-409.
    2. Zheng, Linjiang & Peng, Xiaoli & Wang, Linglin & Sun, Dihua, 2019. "Simulation of pedestrian evacuation considering emergency spread and pedestrian panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 167-181.
    3. Hughes, Roger L., 2002. "A continuum theory for the flow of pedestrians," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 507-535, July.
    4. Guo, R.Y. & Huang, H.J., 2008. "A mobile lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 580-586.
    5. Kim, Jooyoung & Ahn, Chiwon & Lee, Seungjae, 2018. "Modeling handicapped pedestrians considering physical characteristics using cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 507-517.
    6. Henein, Colin M. & White, Tony, 2007. "Macroscopic effects of microscopic forces between agents in crowd models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 694-712.
    7. Li, Xingli & Guo, Fang & Kuang, Hua & Geng, Zhongfei & Fan, Yanhong, 2019. "An extended cost potential field cellular automaton model for pedestrian evacuation considering the restriction of visual field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 47-56.
    8. Sun, Yi, 2020. "Kinetic Monte Carlo simulations of bi-direction pedestrian flow with different walk speeds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    9. Ren, Huan & Yan, Yuyue & Gao, Fengqiang, 2021. "Variable guiding strategies in multi-exits evacuation: Pursuing balanced pedestrian densities," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    10. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    11. Li, Yang & Chen, Maoyin & Dou, Zhan & Zheng, Xiaoping & Cheng, Yuan & Mebarki, Ahmed, 2019. "A review of cellular automata models for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    12. Han, Yanbin & Liu, Hong, 2017. "Modified social force model based on information transmission toward crowd evacuation simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 499-509.
    13. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    14. Song, Weiguo & Xu, Xuan & Wang, Bing-Hong & Ni, Shunjiang, 2006. "Simulation of evacuation processes using a multi-grid model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 492-500.
    15. Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.
    16. Cornes, F.E. & Frank, G.A. & Dorso, C.O., 2017. "High pressures in room evacuation processes and a first approach to the dynamics around unconscious pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 282-298.
    17. Zhang, Hao & Liu, Hong & Qin, Xin & Liu, Baoxi, 2018. "Modified two-layer social force model for emergency earthquake evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1107-1119.
    18. Wang, Lingxiao & Jiang, Yin, 2019. "Escape dynamics based on bounded rationality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    19. Tanimoto, Jun & Hagishima, Aya & Tanaka, Yasukaka, 2010. "Study of bottleneck effect at an emergency evacuation exit using cellular automata model, mean field approximation analysis, and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5611-5618.
    20. Schadschneider, Andreas, 2002. "Traffic flow: a statistical physics point of view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(1), pages 153-187.
    21. Zheng, Ying & Li, Xingang & Zhu, Nuo & Jia, Bin & Jiang, Rui, 2018. "Evacuation dynamics with smoking diffusion in three dimension based on an extended Floor-Field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 414-426.
    22. Kirchner, Ansgar & Schadschneider, Andreas, 2002. "Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 260-276.
    23. Guan, Junbiao & Wang, Kaihua, 2020. "Cooperative evolution in pedestrian room evacuation considering different individual behaviors," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    24. Sun, Yi, 2019. "Simulations of bi-direction pedestrian flow using kinetic Monte Carlo methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 519-531.
    25. Cao, Shuchao & Song, Weiguo & Lv, Wei & Fang, Zhiming, 2015. "A multi-grid model for pedestrian evacuation in a room without visibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 45-61.
    26. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Ying & Li, Xingang & Zhu, Nuo & Jia, Bin & Jiang, Rui, 2018. "Evacuation dynamics with smoking diffusion in three dimension based on an extended Floor-Field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 414-426.
    2. Zhang, Wenke & Zhang, Zhichao & Ma, Yueyao & Lee, Eric Wai Ming & Shi, Meng, 2024. "Psychological impatience in pedestrian evacuation: modelling, simulations and experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    3. Yu, Rongfu & Mao, Qinghua & Lv, Jian, 2022. "An extended model for crowd evacuation considering rescue behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    4. Yu Song & Jia Liu & Qian Liu, 2021. "Dynamic Decision-Making Process of Evacuees during Post-Earthquake Evacuation near an Automatic Flap Barrier Gate System: A Broken Windows Perspective," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    5. Li, Xiao-Yang & Lin, Zhi-Yang & Zhang, Peng & Zhang, Xiao-Ning, 2023. "Reconstruction of density and cost potential field of Eikonal equation: Applications to discrete pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    6. Zou, Baobao & Lu, Chunxia & Mao, Shirong & Li, Yi, 2020. "Effect of pedestrian judgement on evacuation efficiency considering hesitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    7. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    8. Sun, Yi, 2020. "Kinetic Monte Carlo simulations of bi-direction pedestrian flow with different walk speeds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    9. Fu, Libi & Liu, Yuxing & Shi, Yongqian & Zhao, Yongxiang, 2021. "Dynamics of bidirectional pedestrian flow in a corridor including individuals with disabilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    10. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    11. Guo, Xiwei & Chen, Jianqiao & Zheng, Yaochen & Wei, Junhong, 2012. "A heterogeneous lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 582-592.
    12. Shi, Meng & Lee, Eric Wai Ming & Ma, Yi, 2018. "A novel grid-based mesoscopic model for evacuation dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 198-210.
    13. Li, Xingli & Guo, Fang & Kuang, Hua & Geng, Zhongfei & Fan, Yanhong, 2019. "An extended cost potential field cellular automaton model for pedestrian evacuation considering the restriction of visual field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 47-56.
    14. Sun, Yi, 2019. "Simulations of bi-direction pedestrian flow using kinetic Monte Carlo methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 519-531.
    15. Srinivasan, Aravinda Ramakrishnan & Karan, Farshad Salimi Naneh & Chakraborty, Subhadeep, 2017. "Pedestrian dynamics with explicit sharing of exit choice during egress through a long corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 770-782.
    16. Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    17. Liu, Yulu & Ma, Xuechen & Tao, Yizhou & Dong, Liyun & Ding, Xu & Qiu, Xiang, 2024. "Numerical investigation on the impact of obstacles on phase transition in pedestrian counter-flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    18. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    19. Huo, Feizhou & Li, Chao & Li, Yufei & Lv, Wei & Ma, Yaping, 2022. "An extended model for describing pedestrian evacuation considering the impact of obstacles on the visual view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    20. Liu, Jing & Jia, Yang & Mao, Tianlu & Wang, Zhaoqi, 2022. "Modeling and simulation analysis of crowd evacuation behavior under terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:445:y:2023:i:c:s0096300323000450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.