IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v37y2008i5p1497-1510.html
   My bibliography  Save this article

Local and global synchronization in general complex dynamical networks with delay coupling

Author

Listed:
  • Lu, Jianquan
  • Ho, Daniel W.C.

Abstract

Local and global synchronization of complex dynamical networks are studied in this paper. Some simple yet generic criteria ensuring delay-independent and delay-dependent synchronization are derived in terms of linear matrix inequalities (LMIs), which can be verified easily via interior-point algorithm. The assumption that the coupling configuration matrix is symmetric and irreducible, which is frequently used in other literatures, is removed. A network with a fixed delay and a special coupling scheme is given as an example to illustrate the theoretical results and the effectiveness of the proposed synchronization scheme.

Suggested Citation

  • Lu, Jianquan & Ho, Daniel W.C., 2008. "Local and global synchronization in general complex dynamical networks with delay coupling," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1497-1510.
  • Handle: RePEc:eee:chsofr:v:37:y:2008:i:5:p:1497-1510
    DOI: 10.1016/j.chaos.2006.10.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906010113
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.10.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Jinde & Ho, Daniel W.C., 2005. "A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1317-1329.
    2. Zhang, Hai-Feng & Wu, Rui-Xin & Fu, Xin-Chu, 2006. "The emergence of chaos in complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 472-479.
    3. Checco, Paolo & Biey, Mario & Kocarev, Ljupco, 2008. "Synchronization in random networks with given expected degree sequences," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 562-577.
    4. Li, Ping & Yi, Zhang & Zhang, Lei, 2006. "Global synchronization of a class of delayed complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 903-908.
    5. Wang, Weiwei & Cao, Jinde, 2006. "Synchronization in an array of linearly coupled networks with time-varying delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 197-211.
    6. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    7. Li, Chunguang & Chen, Guanrong, 2004. "Synchronization in general complex dynamical networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 263-278.
    8. Yu, Yongguang & Zhang, Suochun, 2005. "Global synchronization of three coupled chaotic systems with ring connection," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1233-1242.
    9. Lü, Jinhu & Yu, Xinghuo & Chen, Guanrong, 2004. "Chaos synchronization of general complex dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 334(1), pages 281-302.
    10. Gu, Ya-Qin & Shao, Chun & Fu, Xin-Chu, 2006. "Complete synchronization and stability of star-shaped complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 480-488.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia, Yongxiang & Liu, Nianjun & Iu, Herbert H.C., 2009. "Oscillation and chaos in a deterministic traffic network," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1700-1704.
    2. Wang, Guanjun & Cao, Jinde & Lu, Jianquan, 2010. "Outer synchronization between two nonidentical networks with circumstance noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1480-1488.
    3. Zhang, Yinping & Sun, Jitao, 2009. "Robust synchronization of coupled delayed neural networks under general impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1476-1480.
    4. Liu, Yan & Wang, Junpu, 2021. "Synchronization of coupled systems via intermittent event-triggered control: Quaternion case," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Liu, Tao & Zhao, Jun & Hill, David J., 2009. "Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1506-1519.
    6. Wang, Jian-an & Ma, Xiaohui & Wen, Xinyu & Sun, Qianlai, 2016. "Pinning lag synchronization of drive–response complex networks via intermittent control with two different switched periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 278-287.
    7. Gequn, Liu & Zhiguo, Zhan & Knowles, Gareth, 2015. "Design of inner coupling matrix for robustly self-synchronizing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 440(C), pages 68-80.
    8. Assali, El Abed, 2021. "Predefined-time synchronization of chaotic systems with different dimensions and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    9. He, Guangming & Yang, Jingyu, 2008. "Adaptive synchronization in nonlinearly coupled dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1254-1259.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Tao & Zhao, Jun & Hill, David J., 2009. "Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1506-1519.
    2. He, Guangming & Yang, Jingyu, 2008. "Adaptive synchronization in nonlinearly coupled dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1254-1259.
    3. Guan, Zhi-Hong & Zhang, Hao, 2008. "Stabilization of complex network with hybrid impulsive and switching control," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1372-1382.
    4. Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2007. "Global synchronization in general complex delayed dynamical networks and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 729-742.
    5. Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2007. "Synchronization in complex delayed dynamical networks with impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 684-692.
    6. Liu, Xiwei & Chen, Tianping, 2007. "Exponential synchronization of nonlinear coupled dynamical networks with a delayed coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 82-92.
    7. Liu, Tao & Dimirovski, Georgi M. & Zhao, Jun, 2008. "Exponential synchronization of complex delayed dynamical networks with general topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 643-652.
    8. Cao, Jinde & Wang, Zidong & Sun, Yonghui, 2007. "Synchronization in an array of linearly stochastically coupled networks with time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 718-728.
    9. Yang, Yong & Tu, Lilan & Li, Kuanyang & Guo, Tianjiao, 2019. "Optimized inter-structure for enhancing the synchronizability of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 310-318.
    10. Wu, Jianshe & Jiao, Licheng, 2007. "Synchronization in complex delayed dynamical networks with nonsymmetric coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 513-530.
    11. Du, Hongyue, 2011. "Function projective synchronization in drive–response dynamical networks with non-identical nodes," Chaos, Solitons & Fractals, Elsevier, vol. 44(7), pages 510-514.
    12. Wu, Jianshe & Jiao, Licheng, 2007. "Observer-based synchronization in complex dynamical networks with nonsymmetric coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 469-480.
    13. Li, Ping & Cao, Jinde & Wang, Zidong, 2007. "Robust impulsive synchronization of coupled delayed neural networks with uncertainties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 261-272.
    14. Wang, Weiwei & Cao, Jinde, 2006. "Synchronization in an array of linearly coupled networks with time-varying delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 197-211.
    15. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    16. J. H. Park & S. M. Lee & H. Y. Jung, 2009. "LMI Optimization Approach to Synchronization of Stochastic Delayed Discrete-Time Complex Networks," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 357-367, November.
    17. L. Jarina Banu & P. Balasubramaniam, 2014. "Synchronisation of discrete-time complex networks with randomly occurring uncertainties, nonlinearities and time-delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(7), pages 1427-1450, July.
    18. Wu, Jianshe & Jiao, Licheng, 2008. "Synchronization in dynamic networks with nonsymmetrical time-delay coupling based on linear feedback controllers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2111-2119.
    19. Fei Wang & Zhaowen Zheng & Yongqing Yang, 2019. "Synchronization of Complex Dynamical Networks with Hybrid Time Delay under Event-Triggered Control: The Threshold Function Method," Complexity, Hindawi, vol. 2019, pages 1-17, December.
    20. Lei, Lixing & Yang, Junzhong, 2021. "Patterns in coupled FitzHugh–Nagumo model on duplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:37:y:2008:i:5:p:1497-1510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.