Inducing Sparsity and Shrinkage in Time-Varying Parameter Models
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Florian Huber & Gary Koop & Luca Onorante, 2021. "Inducing Sparsity and Shrinkage in Time-Varying Parameter Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 669-683, July.
- Florian Huber & Gary Koop & Luca Onorante, 2019. "Inducing Sparsity and Shrinkage in Time-Varying Parameter Models," Papers 1905.10787, arXiv.org, revised Dec 2019.
- Huber, Florian & Koop, Gary & Onorante, Luca, 2019. "Inducing sparsity and shrinkage in time-varying parameter models," Working Paper Series 2325, European Central Bank.
References listed on IDEAS
- Anirban Bhattacharya & Debdeep Pati & Natesh S. Pillai & David B. Dunson, 2015. "Dirichlet--Laplace Priors for Optimal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1479-1490, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022.
"APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
- Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2021. "Approximate Bayesian inference and forecasting in huge-dimensional multi-country VARs," Papers 2103.04944, arXiv.org, revised Feb 2022.
- Martin Guth, 2022. "Predicting Default Probabilities for Stress Tests: A Comparison of Models," Papers 2202.03110, arXiv.org.
- Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
- Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
- Jan Prüser & Florian Huber, 2024.
"Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
- Jan Pruser & Florian Huber, 2023. "Nonlinearities in Macroeconomic Tail Risk through the Lens of Big Data Quantile Regressions," Papers 2301.13604, arXiv.org, revised Sep 2023.
- Michael Pfarrhofer, 2024.
"Forecasts with Bayesian vector autoregressions under real time conditions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
- Michael Pfarrhofer, 2020. "Forecasts with Bayesian vector autoregressions under real time conditions," Papers 2004.04984, arXiv.org.
- Lehmann, Robert & Wikman, Ida, 2022.
"Quarterly GDP Estimates for the German States,"
MPRA Paper
112642, University Library of Munich, Germany.
- Robert Lehmann & Ida Wikman, 2022. "Quarterly GDP Estimates for the German States," ifo Working Paper Series 370, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Robert Lehmann & Ida Wikman, 2023. "Quarterly GDP Estimates for the German States: New Data for Business Cycle Analyses and Long-Run Dynamics," CESifo Working Paper Series 10280, CESifo.
- Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
- Simon Beyeler & Sylvia Kaufmann, 2021. "Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 989-1012, November.
- Peter Knaus & Sylvia Fruhwirth-Schnatter, 2023. "The Dynamic Triple Gamma Prior as a Shrinkage Process Prior for Time-Varying Parameter Models," Papers 2312.10487, arXiv.org.
- Manfred M. Fischer & Niko Hauzenberger & Florian Huber & Michael Pfarrhofer, 2023. "General Bayesian time‐varying parameter vector autoregressions for modeling government bond yields," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(1), pages 69-87, January.
- Minerva Mukhopadhyay & David B. Dunson, 2020. "Targeted Random Projection for Prediction From High-Dimensional Features," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1998-2010, December.
- Chan, Joshua C.C. & Yu, Xuewen, 2022.
"Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Joshua C.C. Chan & Xuewen Yu, 2020. "Fast and accurate variational inference for large Bayesian VARs with stochastic volatility," CAMA Working Papers 2020-108, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Joshua C. C. Chan & Xuewen Yu, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Papers 2206.08438, arXiv.org.
- Alex Rodrigo dos S. Sousa & Nancy L. Garcia & Brani Vidakovic, 2021. "Bayesian wavelet shrinkage with beta priors," Computational Statistics, Springer, vol. 36(2), pages 1341-1363, June.
- Jaejoon Lee & Seongil Jo & Jaeyong Lee, 2022. "Robust sparse Bayesian infinite factor models," Computational Statistics, Springer, vol. 37(5), pages 2693-2715, November.
- Posch, Konstantin & Arbeiter, Maximilian & Pilz, Juergen, 2020. "A novel Bayesian approach for variable selection in linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Gregor Kastner & Florian Huber, 2020.
"Sparse Bayesian vector autoregressions in huge dimensions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.
- Gregor Kastner & Florian Huber, 2017. "Sparse Bayesian vector autoregressions in huge dimensions," Papers 1704.03239, arXiv.org, revised Dec 2019.
- Tathagata Basu & Matthias C. M. Troffaes & Jochen Einbeck, 2023. "A Robust Bayesian Analysis of Variable Selection under Prior Ignorance," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1014-1057, February.
- Uddin, Md Nazir & Gaskins, Jeremy T., 2023. "Shared Bayesian variable shrinkage in multinomial logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
- Florian Huber & Tam'as Krisztin & Michael Pfarrhofer, 2018. "A Bayesian panel VAR model to analyze the impact of climate change on high-income economies," Papers 1804.01554, arXiv.org, revised Feb 2021.
More about this item
Keywords
Sparsity; shrinkage; hierarchical priors; time varying parameter regression;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
- D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
- E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2019-06-10 (Econometrics)
- NEP-ETS-2019-06-10 (Econometric Time Series)
- NEP-FOR-2019-06-10 (Forecasting)
- NEP-MAC-2019-06-10 (Macroeconomics)
- NEP-ORE-2019-06-10 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:sbgwpe:2019_002. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jörg Paetzold (email available below). General contact details of provider: https://edirc.repec.org/data/iwsbgat.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.