IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v68y2005i2p115-125.html
   My bibliography  Save this article

Solution quality of random search methods for discrete stochastic optimization

Author

Listed:
  • Alrefaei, Mahmoud H.
  • Alawneh, Ameen J.

Abstract

In this paper, we propose a framework for selecting a high quality global optimal solution for discrete stochastic optimization problems with a predetermined confidence level using general random search methods. This procedure is based on performing the random search algorithm several replications to get estimate of the error gap between the estimated optimal value and the actual optimal value. A confidence set that contains the optimal solution is then constructed and methods of the indifference zone approach are used to select the optimal solution with high probability. The proposed procedure is applied on a simulated annealing algorithm for solving a particular discrete stochastic optimization problem involving queuing models. The numerical results indicate that the proposed technique indeed locate a high quality optimal solution.

Suggested Citation

  • Alrefaei, Mahmoud H. & Alawneh, Ameen J., 2005. "Solution quality of random search methods for discrete stochastic optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(2), pages 115-125.
  • Handle: RePEc:eee:matcom:v:68:y:2005:i:2:p:115-125
    DOI: 10.1016/j.matcom.2004.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475404002745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2004.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David S. Johnson & Cecilia R. Aragon & Lyle A. McGeoch & Catherine Schevon, 1989. "Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning," Operations Research, INFORMS, vol. 37(6), pages 865-892, December.
    2. Barry L. Nelson & Julie Swann & David Goldsman & Wheyming Song, 2001. "Simple Procedures for Selecting the Best Simulated System When the Number of Alternatives is Large," Operations Research, INFORMS, vol. 49(6), pages 950-963, December.
    3. Alrefaei, Mahmoud H. & Alawneh, Ameen J., 2004. "Selecting the best stochastic system for large scale problems in DEDS," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 237-245.
    4. Mahmoud H. Alrefaei & Sigrún Andradóttir, 1999. "A Simulated Annealing Algorithm with Constant Temperature for Discrete Stochastic Optimization," Management Science, INFORMS, vol. 45(5), pages 748-764, May.
    5. Bruce Hajek, 1988. "Cooling Schedules for Optimal Annealing," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 311-329, May.
    6. Alkhamis, Talal M. & Ahmed, Mohamed A. & Tuan, Vu Kim, 1999. "Simulated annealing for discrete optimization with estimation," European Journal of Operational Research, Elsevier, vol. 116(3), pages 530-544, August.
    7. Alrefaei, Mahmoud H. & Andradottir, Sigrun, 2001. "A modification of the stochastic ruler method for discrete stochastic optimization," European Journal of Operational Research, Elsevier, vol. 133(1), pages 160-182, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsai, Shing Chih, 2011. "Selecting the best simulated system with weighted control-variate estimators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 705-717.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    2. Alrefaei, Mahmoud H. & Alawneh, Ameen J., 2004. "Selecting the best stochastic system for large scale problems in DEDS," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 237-245.
    3. Andrei A. Prudius & Sigrún Andradóttir, 2012. "Averaging frameworks for simulation optimization with applications to simulated annealing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(6), pages 411-429, September.
    4. Lee, Loo Hay & Chew, Ek Peng & Teng, Suyan & Chen, Yankai, 2008. "Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem," European Journal of Operational Research, Elsevier, vol. 189(2), pages 476-491, September.
    5. Pirlot, Marc, 1996. "General local search methods," European Journal of Operational Research, Elsevier, vol. 92(3), pages 493-511, August.
    6. Ahmed, Mohamed A. & Alkhamis, Talal M., 2009. "Simulation optimization for an emergency department healthcare unit in Kuwait," European Journal of Operational Research, Elsevier, vol. 198(3), pages 936-942, November.
    7. Van Buer, Michael G. & Woodruff, David L. & Olson, Rick T., 1999. "Solving the medium newspaper production/distribution problem," European Journal of Operational Research, Elsevier, vol. 115(2), pages 237-253, June.
    8. Yiyo Kuo, 2014. "Design method using hybrid of line-type and circular-type routes for transit network system optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 600-613, July.
    9. Chuljin Park & Seong-Hee Kim, 2015. "Penalty Function with Memory for Discrete Optimization via Simulation with Stochastic Constraints," Operations Research, INFORMS, vol. 63(5), pages 1195-1212, October.
    10. Doole, Graeme J., 2007. "A primer on implementing compressed simulated annealing for the optimisation of a constrained simulation model in Microsoft Excel," Working Papers 7420, University of Western Australia, School of Agricultural and Resource Economics.
    11. Wang, Honggang, 2012. "Retrospective optimization of mixed-integer stochastic systems using dynamic simplex linear interpolation," European Journal of Operational Research, Elsevier, vol. 217(1), pages 141-148.
    12. Pichitlamken, Juta & Nelson, Barry L. & Hong, L. Jeff, 2006. "A sequential procedure for neighborhood selection-of-the-best in optimization via simulation," European Journal of Operational Research, Elsevier, vol. 173(1), pages 283-298, August.
    13. Sigrún Andradóttir & Andrei A. Prudius, 2009. "Balanced Explorative and Exploitative Search with Estimation for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 193-208, May.
    14. L. Jeff Hong & Barry L. Nelson, 2006. "Discrete Optimization via Simulation Using COMPASS," Operations Research, INFORMS, vol. 54(1), pages 115-129, February.
    15. Gabriel M. Portal & Marcus Ritt & Leonardo M. Borba & Luciana S. Buriol, 2016. "Simulated annealing for the machine reassignment problem," Annals of Operations Research, Springer, vol. 242(1), pages 93-114, July.
    16. Graeme J. Doole & David J. Pannell, 2008. "Optimisation of a Large, Constrained Simulation Model using Compressed Annealing," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(1), pages 188-206, February.
    17. LeBlanc, Larry J. & Shtub, Avraham & Anandalingam, G., 1999. "Formulating and solving production planning problems," European Journal of Operational Research, Elsevier, vol. 112(1), pages 54-80, January.
    18. Sigrún Andradóttir, 2002. "Simulation Optimization: Integrating Research and Practice," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 216-219, August.
    19. Teng, Suyan & Lee, Loo Hay & Chew, Ek Peng, 2010. "Integration of indifference-zone with multi-objective computing budget allocation," European Journal of Operational Research, Elsevier, vol. 203(2), pages 419-429, June.
    20. Tsai, Shing Chih, 2011. "Selecting the best simulated system with weighted control-variate estimators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 705-717.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:68:y:2005:i:2:p:115-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.