IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v64y2004i2p237-245.html
   My bibliography  Save this article

Selecting the best stochastic system for large scale problems in DEDS

Author

Listed:
  • Alrefaei, Mahmoud H.
  • Alawneh, Ameen J.

Abstract

We consider the problem of selecting the stochastic system with the best expected performance measure, when the number of alternative systems is large. We consider the case of discrete event dynamic systems (DEDS) where the standard clock simulation technique can be used for simulating multiple systems using only one sample path. In this paper, we use a two-phase procedure that uses the standard clock simulation technique. In the first phase, we screen out non-competent alternatives and construct a confidence set that contains the best alternative with a pre-specified large probability. In the second phase, we use the indifference-zone ranking and selection procedure to select the best expected alternative among the survivals of the first phase. We implement this algorithm for solving a practical simulation optimization problem.

Suggested Citation

  • Alrefaei, Mahmoud H. & Alawneh, Ameen J., 2004. "Selecting the best stochastic system for large scale problems in DEDS," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 237-245.
  • Handle: RePEc:eee:matcom:v:64:y:2004:i:2:p:237-245
    DOI: 10.1016/j.matcom.2003.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847540300154X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2003.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahmoud H. Alrefaei & Sigrún Andradóttir, 1999. "A Simulated Annealing Algorithm with Constant Temperature for Discrete Stochastic Optimization," Management Science, INFORMS, vol. 45(5), pages 748-764, May.
    2. David W. Sullivan & James R. Wilson, 1989. "Restricted Subset Selection Procedures for Simulation," Operations Research, INFORMS, vol. 37(1), pages 52-71, February.
    3. Vladimir I. Norkin & Yuri M. Ermoliev & Andrzej Ruszczyński, 1998. "On Optimal Allocation of Indivisibles Under Uncertainty," Operations Research, INFORMS, vol. 46(3), pages 381-395, June.
    4. Alrefaei, Mahmoud H. & Andradottir, Sigrun, 2001. "A modification of the stochastic ruler method for discrete stochastic optimization," European Journal of Operational Research, Elsevier, vol. 133(1), pages 160-182, August.
    5. Barry L. Nelson & Julie Swann & David Goldsman & Wheyming Song, 2001. "Simple Procedures for Selecting the Best Simulated System When the Number of Alternatives is Large," Operations Research, INFORMS, vol. 49(6), pages 950-963, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Loo Hay & Chew, Ek Peng & Manikam, Puvaneswari, 2006. "A general framework on the simulation-based optimization under fixed computing budget," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1828-1841, November.
    2. Alrefaei, Mahmoud H. & Alawneh, Ameen J., 2005. "Solution quality of random search methods for discrete stochastic optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(2), pages 115-125.
    3. Teng, Suyan & Lee, Loo Hay & Chew, Ek Peng, 2010. "Integration of indifference-zone with multi-objective computing budget allocation," European Journal of Operational Research, Elsevier, vol. 203(2), pages 419-429, June.
    4. Tsai, Shing Chih, 2011. "Selecting the best simulated system with weighted control-variate estimators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 705-717.
    5. Lee, Loo Hay & Chew, Ek Peng & Teng, Suyan & Chen, Yankai, 2008. "Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem," European Journal of Operational Research, Elsevier, vol. 189(2), pages 476-491, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sigrún Andradóttir & Andrei A. Prudius, 2009. "Balanced Explorative and Exploitative Search with Estimation for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 193-208, May.
    2. Alrefaei, Mahmoud H. & Alawneh, Ameen J., 2005. "Solution quality of random search methods for discrete stochastic optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(2), pages 115-125.
    3. Mahmoud H. Alrefaei & Sigrún Andradóttir, 2005. "Discrete stochastic optimization using variants of the stochastic ruler method," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 344-360, June.
    4. Wang, Honggang, 2012. "Retrospective optimization of mixed-integer stochastic systems using dynamic simplex linear interpolation," European Journal of Operational Research, Elsevier, vol. 217(1), pages 141-148.
    5. L. Jeff Hong & Barry L. Nelson, 2006. "Discrete Optimization via Simulation Using COMPASS," Operations Research, INFORMS, vol. 54(1), pages 115-129, February.
    6. Jie Xu & Barry L. Nelson & L. Jeff Hong, 2013. "An Adaptive Hyperbox Algorithm for High-Dimensional Discrete Optimization via Simulation Problems," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 133-146, February.
    7. Andrei A. Prudius & Sigrún Andradóttir, 2012. "Averaging frameworks for simulation optimization with applications to simulated annealing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(6), pages 411-429, September.
    8. Chuljin Park & Seong-Hee Kim, 2015. "Penalty Function with Memory for Discrete Optimization via Simulation with Stochastic Constraints," Operations Research, INFORMS, vol. 63(5), pages 1195-1212, October.
    9. Pichitlamken, Juta & Nelson, Barry L. & Hong, L. Jeff, 2006. "A sequential procedure for neighborhood selection-of-the-best in optimization via simulation," European Journal of Operational Research, Elsevier, vol. 173(1), pages 283-298, August.
    10. Sigrún Andradóttir, 2002. "Simulation Optimization: Integrating Research and Practice," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 216-219, August.
    11. Tsai, Shing Chih, 2011. "Selecting the best simulated system with weighted control-variate estimators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 705-717.
    12. Shing Chih Tsai, 2013. "Rapid Screening Procedures for Zero-One Optimization via Simulation," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 317-331, May.
    13. Weihong Cai & Fengxi Duan, 2023. "Task Scheduling for Federated Learning in Edge Cloud Computing Environments by Using Adaptive-Greedy Dingo Optimization Algorithm and Binary Salp Swarm Algorithm," Future Internet, MDPI, vol. 15(11), pages 1-23, October.
    14. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Ekşioğlu, Sandra D. & Castillo-Villar, Krystel K., 2021. "Designing a reliable electric vehicle charging station expansion under uncertainty," International Journal of Production Economics, Elsevier, vol. 236(C).
    15. V.I. Norkin & G.C. Pflug & A. Ruszczynski, 1996. "A Branch and Bound Method for Stochastic Global Optimization," Working Papers wp96065, International Institute for Applied Systems Analysis.
    16. Gyana R. Parija & Shabbir Ahmed & Alan J. King, 2004. "On Bridging the Gap Between Stochastic Integer Programming and MIP Solver Technologies," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 73-83, February.
    17. Shamsuddin Ahmed, 2013. "Performance of derivative free search ANN training algorithm with time series and classification problems," Computational Statistics, Springer, vol. 28(5), pages 1881-1914, October.
    18. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    19. Zhang, Jingrui & Li, Zhuoyun & Wang, Beibei, 2021. "Within-day rolling optimal scheduling problem for active distribution networks by multi-objective evolutionary algorithm based on decomposition integrating with thought of simulated annealing," Energy, Elsevier, vol. 223(C).
    20. Emre Barut & Warren Powell, 2014. "Optimal learning for sequential sampling with non-parametric beliefs," Journal of Global Optimization, Springer, vol. 58(3), pages 517-543, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:64:y:2004:i:2:p:237-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.