IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v52y2005i4p344-360.html
   My bibliography  Save this article

Discrete stochastic optimization using variants of the stochastic ruler method

Author

Listed:
  • Mahmoud H. Alrefaei
  • Sigrún Andradóttir

Abstract

We present two random search methods for solving discrete stochastic optimization problems. Both of these methods are variants of the stochastic ruler algorithm. They differ from our earlier modification of the stochastic ruler algorithm in that they use different approaches for estimating the optimal solution. Our new methods are guaranteed to converge almost surely to the set of global optimal solutions under mild conditions. We discuss under what conditions these new methods are expected to converge faster than the modified stochastic ruler algorithm. We also discuss how these methods can be used for solving discrete optimization problems when the values of the objective function are estimated using either transient or steady‐state simulation. Finally, we present numerical results that compare the performance of our new methods with that of the modified stochastic ruler algorithm when applied to solve buffer allocation problems. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.

Suggested Citation

  • Mahmoud H. Alrefaei & Sigrún Andradóttir, 2005. "Discrete stochastic optimization using variants of the stochastic ruler method," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 344-360, June.
  • Handle: RePEc:wly:navres:v:52:y:2005:i:4:p:344-360
    DOI: 10.1002/nav.20080
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20080
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mahmoud H. Alrefaei & Sigrún Andradóttir, 1999. "A Simulated Annealing Algorithm with Constant Temperature for Discrete Stochastic Optimization," Management Science, INFORMS, vol. 45(5), pages 748-764, May.
    2. Alrefaei, Mahmoud H. & Andradottir, Sigrun, 2001. "A modification of the stochastic ruler method for discrete stochastic optimization," European Journal of Operational Research, Elsevier, vol. 133(1), pages 160-182, August.
    3. Vladimir I. Norkin & Yuri M. Ermoliev & Andrzej Ruszczyński, 1998. "On Optimal Allocation of Indivisibles Under Uncertainty," Operations Research, INFORMS, vol. 46(3), pages 381-395, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tahir Ekin & Stephen Walker & Paul Damien, 2023. "Augmented simulation methods for discrete stochastic optimization with recourse," Annals of Operations Research, Springer, vol. 320(2), pages 771-793, January.
    2. Qiushi Chen & Lei Zhao & Jan C. Fransoo & Zhe Li, 2019. "Dual-mode inventory management under a chance credit constraint," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 147-178, March.
    3. Andrei A. Prudius & Sigrún Andradóttir, 2012. "Averaging frameworks for simulation optimization with applications to simulated annealing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(6), pages 411-429, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sigrún Andradóttir & Andrei A. Prudius, 2009. "Balanced Explorative and Exploitative Search with Estimation for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 193-208, May.
    2. Alrefaei, Mahmoud H. & Alawneh, Ameen J., 2004. "Selecting the best stochastic system for large scale problems in DEDS," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 237-245.
    3. Wang, Honggang, 2012. "Retrospective optimization of mixed-integer stochastic systems using dynamic simplex linear interpolation," European Journal of Operational Research, Elsevier, vol. 217(1), pages 141-148.
    4. L. Jeff Hong & Barry L. Nelson, 2006. "Discrete Optimization via Simulation Using COMPASS," Operations Research, INFORMS, vol. 54(1), pages 115-129, February.
    5. Alrefaei, Mahmoud H. & Alawneh, Ameen J., 2005. "Solution quality of random search methods for discrete stochastic optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(2), pages 115-125.
    6. Andrei A. Prudius & Sigrún Andradóttir, 2012. "Averaging frameworks for simulation optimization with applications to simulated annealing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(6), pages 411-429, September.
    7. Chuljin Park & Seong-Hee Kim, 2015. "Penalty Function with Memory for Discrete Optimization via Simulation with Stochastic Constraints," Operations Research, INFORMS, vol. 63(5), pages 1195-1212, October.
    8. Pichitlamken, Juta & Nelson, Barry L. & Hong, L. Jeff, 2006. "A sequential procedure for neighborhood selection-of-the-best in optimization via simulation," European Journal of Operational Research, Elsevier, vol. 173(1), pages 283-298, August.
    9. Weihong Cai & Fengxi Duan, 2023. "Task Scheduling for Federated Learning in Edge Cloud Computing Environments by Using Adaptive-Greedy Dingo Optimization Algorithm and Binary Salp Swarm Algorithm," Future Internet, MDPI, vol. 15(11), pages 1-23, October.
    10. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Ekşioğlu, Sandra D. & Castillo-Villar, Krystel K., 2021. "Designing a reliable electric vehicle charging station expansion under uncertainty," International Journal of Production Economics, Elsevier, vol. 236(C).
    11. V.I. Norkin & G.C. Pflug & A. Ruszczynski, 1996. "A Branch and Bound Method for Stochastic Global Optimization," Working Papers wp96065, International Institute for Applied Systems Analysis.
    12. Gyana R. Parija & Shabbir Ahmed & Alan J. King, 2004. "On Bridging the Gap Between Stochastic Integer Programming and MIP Solver Technologies," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 73-83, February.
    13. Shamsuddin Ahmed, 2013. "Performance of derivative free search ANN training algorithm with time series and classification problems," Computational Statistics, Springer, vol. 28(5), pages 1881-1914, October.
    14. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    15. Zhang, Jingrui & Li, Zhuoyun & Wang, Beibei, 2021. "Within-day rolling optimal scheduling problem for active distribution networks by multi-objective evolutionary algorithm based on decomposition integrating with thought of simulated annealing," Energy, Elsevier, vol. 223(C).
    16. B.J. Lence & A. Ruszczynski, 1996. "Managing Water Quality under Uncertainty: Application of a New Stochastic Branch and Bound Method," Working Papers wp96066, International Institute for Applied Systems Analysis.
    17. Katsumi Morikawa & Katsuhiko Takahashi & Daisuke Hirotani, 2018. "Performance evaluation of candidate appointment schedules using clearing functions," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 509-518, March.
    18. Sigurdur Ólafsson, 2004. "Two-Stage Nested Partitions Method for Stochastic Optimization," Methodology and Computing in Applied Probability, Springer, vol. 6(1), pages 5-27, March.
    19. Gülcü, Ayla & Akkan, Can, 2020. "Robust university course timetabling problem subject to single and multiple disruptions," European Journal of Operational Research, Elsevier, vol. 283(2), pages 630-646.
    20. Gutjahr, W. J. & Hellmayr, A. & Pflug, G. Ch., 1999. "Optimal stochastic single-machine-tardiness scheduling by stochastic branch-and-bound," European Journal of Operational Research, Elsevier, vol. 117(2), pages 396-413, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:52:y:2005:i:4:p:344-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.