IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v56y2013i1p185-215.html
   My bibliography  Save this article

From simulated annealing to stochastic continuation: a new trend in combinatorial optimization

Author

Listed:
  • Marc Robini
  • Pierre-Jean Reissman

Abstract

Simulated annealing (SA) is a generic optimization method that is quite popular because of its ease of implementation and its global convergence properties. However, SA is widely reported to converge very slowly, and it is common practice to allow extra freedom in its design at the expense of losing global convergence guarantees. A natural way to increase the flexibility of SA is to allow the objective function and the communication mechanism to be temperature-dependent, the idea being to gradually reveal the complexity of the optimization problem and to increase the mixing rate at low temperatures. We call this general class of annealing processes stochastic continuation (SC). In the first part of this paper, we introduce SC starting from SA, and we derive simple sufficient conditions for the global convergence of SC. Our main result is interesting in two respects: first, the conditions for global convergence are surprisingly weak—in particular, they do not involve the variations of the objective function with temperature—and second, exponential cooling makes it possible to be arbitrarily close to the best possible convergence speed exponent of SA. The second part is devoted to the application of SC to the problem of producing aesthetically pleasing drawings of undirected graphs. We consider the objective function defined by Kamada and Kawai (Inf Process Lett 31(1):7–15, 1989 ), which measures the quality of a drawing as a weighted sum of squared differences between Euclidean and graph-theoretic inter-vertex distances. Our experiments show that SC outperforms SA with optimal communication setting both in terms of minimizing the objective function and in terms of standard aesthetic criteria. Copyright Springer Science+Business Media, LLC. 2013

Suggested Citation

  • Marc Robini & Pierre-Jean Reissman, 2013. "From simulated annealing to stochastic continuation: a new trend in combinatorial optimization," Journal of Global Optimization, Springer, vol. 56(1), pages 185-215, May.
  • Handle: RePEc:spr:jglopt:v:56:y:2013:i:1:p:185-215
    DOI: 10.1007/s10898-012-9860-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-9860-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-9860-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick Groenen & Willem Heiser, 1996. "The tunneling method for global optimization in multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 529-550, September.
    2. David S. Johnson & Cecilia R. Aragon & Lyle A. McGeoch & Catherine Schevon, 1989. "Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning," Operations Research, INFORMS, vol. 37(6), pages 865-892, December.
    3. Jeffrey W. Ohlmann & James C. Bean & Shane G. Henderson, 2004. "Convergence in Probability of Compressed Annealing," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 837-860, November.
    4. Peter C. Schuur, 1997. "Classification of Acceptance Criteria for the Simulated Annealing Algorithm," Mathematics of Operations Research, INFORMS, vol. 22(2), pages 266-275, May.
    5. Bruce Hajek, 1988. "Cooling Schedules for Optimal Annealing," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 311-329, May.
    6. Saul Amorim & Jean-Pierre Barthélemy & Celso Ribeiro, 1992. "Clustering and clique partitioning: Simulated annealing and tabu search approaches," Journal of Classification, Springer;The Classification Society, vol. 9(1), pages 17-41, January.
    7. M. Locatelli, 2000. "Simulated Annealing Algorithms for Continuous Global Optimization: Convergence Conditions," Journal of Optimization Theory and Applications, Springer, vol. 104(1), pages 121-133, January.
    8. J.E. Orosz & S.H. Jacobson, 2002. "Analysis of Static Simulated Annealing Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 115(1), pages 165-182, October.
    9. R. L. Yang, 2000. "Convergence of the Simulated Annealing Algorithm for Continuous Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 104(3), pages 691-716, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Weise & Yuezhong Wu & Raymond Chiong & Ke Tang & Jörg Lässig, 2016. "Global versus local search: the impact of population sizes on evolutionary algorithm performance," Journal of Global Optimization, Springer, vol. 66(3), pages 511-534, November.
    2. Augustynczik, Andrey Lessa Derci & Arce, Julio Eduardo & Yousefpour, Rasoul & da Silva, Arinei Carlos Lindbeck, 2016. "Promoting harvesting stands connectivity and its economic implications in Brazilian forest plantations applying integer linear programming and simulated annealing," Forest Policy and Economics, Elsevier, vol. 73(C), pages 120-129.
    3. Marc C. Robini & Feng Yang & Yuemin Zhu, 2020. "A stochastic approach to full inverse treatment planning for charged-particle therapy," Journal of Global Optimization, Springer, vol. 77(4), pages 853-893, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Graeme J. Doole & David J. Pannell, 2008. "Optimisation of a Large, Constrained Simulation Model using Compressed Annealing," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(1), pages 188-206, February.
    2. Enlu Zhou & Xi Chen, 2013. "Sequential Monte Carlo simulated annealing," Journal of Global Optimization, Springer, vol. 55(1), pages 101-124, January.
    3. Doole, Graeme J., 2007. "A primer on implementing compressed simulated annealing for the optimisation of a constrained simulation model in Microsoft Excel," Working Papers 7420, University of Western Australia, School of Agricultural and Resource Economics.
    4. Pirlot, Marc, 1996. "General local search methods," European Journal of Operational Research, Elsevier, vol. 92(3), pages 493-511, August.
    5. Gerber, Mathieu & Bornn, Luke, 2018. "Convergence results for a class of time-varying simulated annealing algorithms," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1073-1094.
    6. Yiyo Kuo, 2014. "Design method using hybrid of line-type and circular-type routes for transit network system optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 600-613, July.
    7. Gabriel M. Portal & Marcus Ritt & Leonardo M. Borba & Luciana S. Buriol, 2016. "Simulated annealing for the machine reassignment problem," Annals of Operations Research, Springer, vol. 242(1), pages 93-114, July.
    8. Jeffrey W. Ohlmann & Barrett W. Thomas, 2007. "A Compressed-Annealing Heuristic for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 80-90, February.
    9. Alrefaei, Mahmoud H. & Alawneh, Ameen J., 2005. "Solution quality of random search methods for discrete stochastic optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(2), pages 115-125.
    10. Franzin, Alberto & Stützle, Thomas, 2023. "A landscape-based analysis of fixed temperature and simulated annealing," European Journal of Operational Research, Elsevier, vol. 304(2), pages 395-410.
    11. Van Breedam, Alex, 1995. "Improvement heuristics for the Vehicle Routing Problem based on simulated annealing," European Journal of Operational Research, Elsevier, vol. 86(3), pages 480-490, November.
    12. Van Buer, Michael G. & Woodruff, David L. & Olson, Rick T., 1999. "Solving the medium newspaper production/distribution problem," European Journal of Operational Research, Elsevier, vol. 115(2), pages 237-253, June.
    13. LeBlanc, Larry J. & Shtub, Avraham & Anandalingam, G., 1999. "Formulating and solving production planning problems," European Journal of Operational Research, Elsevier, vol. 112(1), pages 54-80, January.
    14. Alan Lockett & Risto Miikkulainen, 2014. "Evolutionary annealing: global optimization in measure spaces," Journal of Global Optimization, Springer, vol. 58(1), pages 75-108, January.
    15. Sheldon H. Jacobson & Shane N. Hall & Laura A. McLay & Jeffrey E. Orosz, 2005. "Performance Analysis of Cyclical Simulated Annealing Algorithms," Methodology and Computing in Applied Probability, Springer, vol. 7(2), pages 183-201, June.
    16. Kai Gutenschwager & Christian Niklaus & Stefan Voß, 2004. "Dispatching of an Electric Monorail System: Applying Metaheuristics to an Online Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 38(4), pages 434-446, November.
    17. Fink, Andreas & Vo[ss], Stefan, 2003. "Solving the continuous flow-shop scheduling problem by metaheuristics," European Journal of Operational Research, Elsevier, vol. 151(2), pages 400-414, December.
    18. Michael Brusco & Douglas Steinley, 2011. "A Tabu-Search Heuristic for Deterministic Two-Mode Blockmodeling of Binary Network Matrices," Psychometrika, Springer;The Psychometric Society, vol. 76(4), pages 612-633, October.
    19. Stoica, R.S. & Gregori, P. & Mateu, J., 2005. "Simulated annealing and object point processes: Tools for analysis of spatial patterns," Stochastic Processes and their Applications, Elsevier, vol. 115(11), pages 1860-1882, November.
    20. Dell'Amico, Mauro & Trubian, Marco, 1998. "Solution of large weighted equicut problems," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 500-521, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:56:y:2013:i:1:p:185-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.