IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v214y2023icp315-333.html
   My bibliography  Save this article

An efficient numerical method for the distributed order time-fractional diffusion equation with error analysis and stability

Author

Listed:
  • Derakhshan, Mohammad Hossein
  • Rezaei, Hamid
  • Marasi, Hamid Reza

Abstract

This article proposes a numerical method to find the numerical solutions of the time-fractional diffusion equations involving fractional distributed order operator of Caputo type. Using the finite difference approach, we solve these equations by applying the semi-discrete method regarding the time variable and the fully-discrete method regarding the spatial variable. For the distributed integral part with respect to time, the Gauss–Legendre quadrature formula is applied and to estimate the multi-term time-fractional operator, including the Caputo fractional derivative, the L2 -1 approach is utilized. In addition, the error analysis and stability of the proposed numerical method are studied in this work. Finally, some numerical examples are provided to demonstrate the accuracy and efficiency of the suggested method. These examples are compared to several numerical previous methods stated in the articles, and the results show that the accuracy of our method is superior to these methods.

Suggested Citation

  • Derakhshan, Mohammad Hossein & Rezaei, Hamid & Marasi, Hamid Reza, 2023. "An efficient numerical method for the distributed order time-fractional diffusion equation with error analysis and stability," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 315-333.
  • Handle: RePEc:eee:matcom:v:214:y:2023:i:c:p:315-333
    DOI: 10.1016/j.matcom.2023.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423002975
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González-Calderón, Alfredo & Vivas-Cruz, Luis X. & Taneco-Hernández, M.A. & Gómez-Aguilar, J.F., 2023. "Assessment of the performance of the hyperbolic-NILT method to solve fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 375-390.
    2. Li, Yuanlu & Liu, Fawang & Turner, Ian W. & Li, Tao, 2018. "Time-fractional diffusion equation for signal smoothing," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 108-116.
    3. Ansari, Alireza & Derakhshan, Mohammad Hossein, 2023. "On spectral polar fractional Laplacian," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 636-663.
    4. Pourbabaee, Marzieh & Saadatmandi, Abbas, 2019. "A novel Legendre operational matrix for distributed order fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 215-231.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Zesen & Li, Xiaolin, 2024. "Analysis of a fast element-free Galerkin method for the multi-term time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 677-692.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ansari, Alireza & Derakhshan, Mohammad Hossein, 2024. "Time–space fractional Euler–Poisson–Darboux equation with Bessel fractional derivative in infinite and finite domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 383-402.
    2. Kumar, Yashveer & Singh, Vineet Kumar, 2021. "Computational approach based on wavelets for financial mathematical model governed by distributed order fractional differential equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 531-569.
    3. Lei Fu & Hongwei Yang, 2019. "An Application of (3+1)-Dimensional Time-Space Fractional ZK Model to Analyze the Complex Dust Acoustic Waves," Complexity, Hindawi, vol. 2019, pages 1-15, August.
    4. Richard L. Magin & Hamid Karani & Shuhong Wang & Yingjie Liang, 2019. "Fractional Order Complexity Model of the Diffusion Signal Decay in MRI," Mathematics, MDPI, vol. 7(4), pages 1-16, April.
    5. Xie, Jiaquan & Wang, Tao & Ren, Zhongkai & Zhang, Jun & Quan, Long, 2019. "Haar wavelet method for approximating the solution of a coupled system of fractional-order integral–differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 80-89.
    6. S M, Sivalingam & Kumar, Pushpendra & Govindaraj, V., 2023. "A novel numerical scheme for fractional differential equations using extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    7. Marasi, H.R. & Derakhshan, M.H. & Ghuraibawi, Amer A. & Kumar, Pushpendra, 2024. "A novel method based on fractional order Gegenbauer wavelet operational matrix for the solutions of the multi-term time-fractional telegraph equation of distributed order," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 405-424.
    8. Veeresha, P. & Prakasha, D.G., 2019. "A novel technique for (2+1)-dimensional time-fractional coupled Burgers equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 324-345.
    9. Yang, Dongsheng & Yu, Yongguang & Wang, Hu & Ren, Guojian & Zhang, Xiaoli, 2024. "Successive lag synchronization of heterogeneous distributed-order coupled neural networks with unbounded delayed coupling," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    10. Pourbabaee, Marzieh & Saadatmandi, Abbas, 2022. "A new operational matrix based on Müntz–Legendre polynomials for solving distributed order fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 210-235.
    11. Kumar, Yashveer & Yadav, Poonam & Singh, Vineet Kumar, 2023. "Distributed order Gauss-Quadrature scheme for distributed order fractional sub-diffusion model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    12. Samir A. El-Tantawy & Rasool Shah & Albandari W. Alrowaily & Nehad Ali Shah & Jae Dong Chung & Sherif. M. E. Ismaeel, 2023. "A Comparative Study of the Fractional-Order Belousov–Zhabotinsky System," Mathematics, MDPI, vol. 11(7), pages 1-15, April.
    13. Jian, Huan-Yan & Huang, Ting-Zhu & Ostermann, Alexander & Gu, Xian-Ming & Zhao, Yong-Liang, 2021. "Fast numerical schemes for nonlinear space-fractional multidelay reaction-diffusion equations by implicit integration factor methods," Applied Mathematics and Computation, Elsevier, vol. 408(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:214:y:2023:i:c:p:315-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.