IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v221y2024icp281-297.html
   My bibliography  Save this article

Harmonic resonance and bifurcation of fractional Rayleigh oscillator with distributed time delay

Author

Listed:
  • Zhang, Yufeng
  • Li, Jing
  • Zhu, Shaotao
  • Ma, Zerui

Abstract

Resonance and bifurcation are prominent and significant features observed in various nonlinear systems, often leading to catastrophic failure in practical engineering. This paper investigates, under an analytical and numerical perspective, the dynamical characteristics of a fractional Rayleigh oscillator with distributed time delay. Firstly, through the application of the multiple scales method, we derive approximated analytical solutions and amplitude–frequency equations for the regions near both primary and secondary resonances. The stability conditions of steady-state motions and the existence region of the subharmonic response are also obtained. Furthermore, to validate the accuracy of the approximated solutions, the results are compared with numerical solutions derived from the Caputo scheme, revealing a high concordance between them. Then, a comprehensive study on response curves is conducted for the system under different nonlinear damping, fractional parameters and delay strength. Finally, we identify and discuss the presence of the forked bifurcation within the system.

Suggested Citation

  • Zhang, Yufeng & Li, Jing & Zhu, Shaotao & Ma, Zerui, 2024. "Harmonic resonance and bifurcation of fractional Rayleigh oscillator with distributed time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 281-297.
  • Handle: RePEc:eee:matcom:v:221:y:2024:i:c:p:281-297
    DOI: 10.1016/j.matcom.2024.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424000880
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anague Tabejieu, L.M. & Nana Nbendjo, B.R. & Woafo, P., 2016. "On the dynamics of Rayleigh beams resting on fractional-order viscoelastic Pasternak foundations subjected to moving loads," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 39-47.
    2. Xie, Jiaquan & Zhao, Fuqiang & He, Dongping & Shi, Wei, 2022. "Bifurcation and resonance of fractional cubic nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Chen, Enli & Xing, Wuce & Wang, Meiqi & Ma, Wenli & Chang, Yujian, 2021. "Study on chaos of nonlinear suspension system with fractional-order derivative under random excitation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Roberto Garrappa & Eva Kaslik & Marina Popolizio, 2019. "Evaluation of Fractional Integrals and Derivatives of Elementary Functions: Overview and Tutorial," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    5. Kai Diethelm & Roberto Garrappa & Martin Stynes, 2020. "Good (and Not So Good) Practices in Computational Methods for Fractional Calculus," Mathematics, MDPI, vol. 8(3), pages 1-21, March.
    6. Zhou, Liangqiang & Chen, Fangqi, 2022. "Chaos of the Rayleigh–Duffing oscillator with a non-smooth periodic perturbation and harmonic excitation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelhamid Mohammed Djaouti & Zareen A. Khan & Muhammad Imran Liaqat & Ashraf Al-Quran, 2024. "A Study of Some Generalized Results of Neutral Stochastic Differential Equations in the Framework of Caputo–Katugampola Fractional Derivatives," Mathematics, MDPI, vol. 12(11), pages 1-20, May.
    2. Zhou, Biliu & Jin, Yanfei & Xu, Huidong, 2022. "Global dynamics for a class of tristable system with negative stiffness," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Shiri, Babak & Baleanu, Dumitru, 2023. "All linear fractional derivatives with power functions’ convolution kernel and interpolation properties," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    4. Anague Tabejieu, L.M. & Nana Nbendjo, B.R. & Filatrella, G., 2019. "Effect of the fractional foundation on the response of beam structure submitted to moving and wind loads," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 178-188.
    5. Dmytro Sytnyk & Barbara Wohlmuth, 2023. "Exponentially Convergent Numerical Method for Abstract Cauchy Problem with Fractional Derivative of Caputo Type," Mathematics, MDPI, vol. 11(10), pages 1-35, May.
    6. Danjin Zhang & Youhua Qian, 2021. "Fast-Slow Coupling Dynamics Behavior of the van der Pol-Rayleigh System," Mathematics, MDPI, vol. 9(23), pages 1-13, November.
    7. He, Ji-Huan & Jiao, Man-Li & Gepreel, Khaled A. & Khan, Yasir, 2023. "Homotopy perturbation method for strongly nonlinear oscillators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 243-258.
    8. Virginia Kiryakova, 2021. "A Guide to Special Functions in Fractional Calculus," Mathematics, MDPI, vol. 9(1), pages 1-40, January.
    9. Ruslan Abdulkadirov & Pavel Lyakhov & Nikolay Nagornov, 2023. "Survey of Optimization Algorithms in Modern Neural Networks," Mathematics, MDPI, vol. 11(11), pages 1-37, May.
    10. Virginia Kiryakova, 2020. "Unified Approach to Fractional Calculus Images of Special Functions—A Survey," Mathematics, MDPI, vol. 8(12), pages 1-35, December.
    11. Ngounou, A.M. & Mba Feulefack, S.C. & Anague Tabejieu, L.M. & Nana Nbendjo, B.R., 2022. "Design, analysis and horseshoes chaos control on tension leg platform system with fractional nonlinear viscoelastic tendon force under regular sea wave excitation," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    12. Ngueuteu Mbouna, S.G. & Banerjee, Tanmoy & Yamapi, René & Woafo, Paul, 2022. "Diverse chimera and symmetry-breaking patterns induced by fractional derivation effect in a network of Stuart-Landau oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    13. Ávalos-Ruíz, L.F. & Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Cortes-Campos, H.M. & Lavín-Delgado, J.E., 2023. "A RGB image encryption technique using chaotic maps of fractional variable-order based on DNA encoding," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    14. Daniele Mortari & Roberto Garrappa & Luigi Nicolò, 2023. "Theory of Functional Connections Extended to Fractional Operators," Mathematics, MDPI, vol. 11(7), pages 1-18, April.
    15. Miwadinou, C.H. & Monwanou, A.V. & Hinvi, L.A. & Chabi Orou, J.B., 2018. "Effect of amplitude modulated signal on chaotic motions in a mixed Rayleigh–Liénard oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 89-101.
    16. Enrica Pirozzi, 2022. "On a Fractional Stochastic Risk Model with a Random Initial Surplus and a Multi-Layer Strategy," Mathematics, MDPI, vol. 10(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:221:y:2024:i:c:p:281-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.