IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics0960077921006548.html
   My bibliography  Save this article

Study on chaos of nonlinear suspension system with fractional-order derivative under random excitation

Author

Listed:
  • Chen, Enli
  • Xing, Wuce
  • Wang, Meiqi
  • Ma, Wenli
  • Chang, Yujian

Abstract

The chaotic motion of a suspension system with fractional order differential under random excitation is studied. The critical condition of chaos in the mean square sense of suspension system is derived by using random Melnikov method. The function relationship between the parameters of suspension system and chaos threshold is established. The boundary curve of chaos is obtained. The influence of fractional differential parameters on chaos boundary curve is studied. The numerical simulation of fractional order suspension system is carried out, and the time domain diagram and frequency of the system are calculated the spectrum, phase plane, Poincare section and the maximum Lyapunov exponent were obtained. The results show that there is chaotic motion in the suspension system with fractional differential under random road excitation, and the coefficient and order of fractional differential term will change the boundary conditions of chaos.

Suggested Citation

  • Chen, Enli & Xing, Wuce & Wang, Meiqi & Ma, Wenli & Chang, Yujian, 2021. "Study on chaos of nonlinear suspension system with fractional-order derivative under random excitation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921006548
    DOI: 10.1016/j.chaos.2021.111300
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921006548
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111300?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Litak, Grzegorz & Borowiec, Marek & Friswell, Michael I. & Przystupa, Wojciech, 2009. "Chaotic response of a quarter car model forced by a road profile with a stochastic component," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2448-2456.
    2. Koumene Taffo, G.I. & Siewe Siewe, M. & Tchawoua, C., 2016. "Stability switches and bifurcation in a two-degrees-of-freedom nonlinear quarter-car with small time-delayed feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 226-239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yufeng & Li, Jing & Zhu, Shaotao & Ma, Zerui, 2024. "Harmonic resonance and bifurcation of fractional Rayleigh oscillator with distributed time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 281-297.
    2. Ávalos-Ruíz, L.F. & Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Cortes-Campos, H.M. & Lavín-Delgado, J.E., 2023. "A RGB image encryption technique using chaotic maps of fractional variable-order based on DNA encoding," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Zhou, Biliu & Jin, Yanfei & Xu, Huidong, 2022. "Global dynamics for a class of tristable system with negative stiffness," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bauomy, H.S. & EL-Sayed, A.T., 2023. "Safety of a quarter-vehicle car through negative derivative feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921006548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.