IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i1p106-d475128.html
   My bibliography  Save this article

A Guide to Special Functions in Fractional Calculus

Author

Listed:
  • Virginia Kiryakova

    (Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; virginia@diogenes.bg)

Abstract

Dedicated to the memory of Professor Richard Askey (1933–2019) and to pay tribute to the Bateman Project . Harry Bateman planned his “shoe-boxes” project (accomplished after his death as Higher Transcendental Functions , Vols. 1–3, 1953–1955, under the editorship by A. Erdélyi) as a “ Guide to the Functions ”. This inspired the author to use the modified title of the present survey. Most of the standard (classical) Special Functions are representable in terms of the Meijer G -function and, specially, of the generalized hypergeometric functions p F q . These appeared as solutions of differential equations in mathematical physics and other applied sciences that are of integer order, usually of second order. However, recently, mathematical models of fractional order are preferred because they reflect more adequately the nature and various social events, and these needs attracted attention to “new” classes of special functions as their solutions, the so-called Special Functions of Fractional Calculus (SF of FC) . Generally, under this notion, we have in mind the Fox H -functions, their most widely used cases of the Wright generalized hypergeometric functions p Ψ q and, in particular, the Mittag–Leffler type functions, among them the “Queen function of fractional calculus”, the Mittag–Leffler function. These fractional indices/parameters extensions of the classical special functions became an unavoidable tool when fractalized models of phenomena and events are treated. Here, we try to review some of the basic results on the theory of the SF of FC, obtained in the author’s works for more than 30 years, and support the wide spreading and important role of these functions by several examples.

Suggested Citation

  • Virginia Kiryakova, 2021. "A Guide to Special Functions in Fractional Calculus," Mathematics, MDPI, vol. 9(1), pages 1-40, January.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:1:p:106-:d:475128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/1/106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/1/106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kiryakova, Virginia, 2017. "Fractional calculus operators of special functions? The result is well predictable!," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 2-15.
    2. Francesco Mainardi & Armando Consiglio, 2020. "The Wright Functions of the Second Kind in Mathematical Physics," Mathematics, MDPI, vol. 8(6), pages 1-26, June.
    3. Sergei Rogosin, 2015. "The Role of the Mittag-Leffler Function in Fractional Modeling," Mathematics, MDPI, vol. 3(2), pages 1-14, May.
    4. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag-Leffler Functions and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-51, May.
    5. Roberto Garrappa & Eva Kaslik & Marina Popolizio, 2019. "Evaluation of Fractional Integrals and Derivatives of Elementary Functions: Overview and Tutorial," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asifa Tassaddiq & Rekha Srivastava, 2023. "New Results Involving the Generalized Krätzel Function with Application to the Fractional Kinetic Equations," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    2. Jordanka Paneva-Konovska & Virginia Kiryakova, 2024. "The Generalized Fox–Wright Function: The Laplace Transform, the Erdélyi–Kober Fractional Integral and Its Role in Fractional Calculus," Mathematics, MDPI, vol. 12(12), pages 1-25, June.
    3. Jordanka Paneva-Konovska, 2021. "Series in Le Roy Type Functions: A Set of Results in the Complex Plane—A Survey," Mathematics, MDPI, vol. 9(12), pages 1-15, June.
    4. Jordanka Paneva-Konovska, 2023. "Prabhakar Functions of Le Roy Type: Inequalities and Asymptotic Formulae," Mathematics, MDPI, vol. 11(17), pages 1-13, September.
    5. Virginia Kiryakova & Jordanka Paneva-Konovska, 2024. "Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey," Mathematics, MDPI, vol. 12(2), pages 1-39, January.
    6. Jordanka Paneva-Konovska, 2022. "Taylor Series for the Mittag–Leffler Functions and Their Multi-Index Analogues," Mathematics, MDPI, vol. 10(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Virginia Kiryakova, 2020. "Unified Approach to Fractional Calculus Images of Special Functions—A Survey," Mathematics, MDPI, vol. 8(12), pages 1-35, December.
    2. Virginia Kiryakova & Jordanka Paneva-Konovska, 2024. "Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey," Mathematics, MDPI, vol. 12(2), pages 1-39, January.
    3. Jordanka Paneva-Konovska, 2022. "Taylor Series for the Mittag–Leffler Functions and Their Multi-Index Analogues," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    4. Abdelhamid Mohammed Djaouti & Zareen A. Khan & Muhammad Imran Liaqat & Ashraf Al-Quran, 2024. "A Study of Some Generalized Results of Neutral Stochastic Differential Equations in the Framework of Caputo–Katugampola Fractional Derivatives," Mathematics, MDPI, vol. 12(11), pages 1-20, May.
    5. Edgardo Alvarez & Carlos Lizama, 2020. "The Super-Diffusive Singular Perturbation Problem," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    6. Sweilam, N.H. & El-Sakout, D.M. & Muttardi, M.M., 2020. "Numerical study for time fractional stochastic semi linear advection diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    7. Ravi Agarwal & Snezhana Hristova & Donal O’Regan & Peter Kopanov, 2020. "p -Moment Mittag–Leffler Stability of Riemann–Liouville Fractional Differential Equations with Random Impulses," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    8. Agahi, Hamzeh & Khalili, Monavar, 2020. "Truncated Mittag-Leffler distribution and superstatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    9. Praveendra Singh & Madhu Jain, 2024. "Inventory policy for degrading items under advanced payment with price and memory sensitive demand using metaheuristic techniques," Operational Research, Springer, vol. 24(3), pages 1-34, September.
    10. Kreer, Markus, 2022. "An elementary proof for dynamical scaling for certain fractional non-homogeneous Poisson processes," Statistics & Probability Letters, Elsevier, vol. 182(C).
    11. Rakesh K. Parmar, 2015. "A Class of Extended Mittag–Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus," Mathematics, MDPI, vol. 3(4), pages 1-14, November.
    12. M. A. Pathan & Maged G. Bin-Saad, 2023. "Mittag-leffler-type function of arbitrary order and their application in the fractional kinetic equation," Partial Differential Equations and Applications, Springer, vol. 4(2), pages 1-25, April.
    13. Nikolai Leonenko & Ely Merzbach, 2015. "Fractional Poisson Fields," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 155-168, March.
    14. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    15. Shiri, Babak & Baleanu, Dumitru, 2023. "All linear fractional derivatives with power functions’ convolution kernel and interpolation properties," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    16. Xiong, Xiangtuan & Xue, Xuemin, 2019. "A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 292-303.
    17. Soma Dhar & Lipi B. Mahanta & Kishore Kumar Das, 2019. "Formulation Of The Simple Markovian Model Using Fractional Calculus Approach And Its Application To Analysis Of Queue Behaviour Of Severe Patients," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 117-129, March.
    18. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    19. Katarzyna Górska & Andrzej Horzela, 2021. "Non-Debye Relaxations: Two Types of Memories and Their Stieltjes Character," Mathematics, MDPI, vol. 9(5), pages 1-13, February.
    20. Slawomir Blasiak, 2021. "Heat Transfer Analysis for Non-Contacting Mechanical Face Seals Using the Variable-Order Derivative Approach," Energies, MDPI, vol. 14(17), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:1:p:106-:d:475128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.