IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924011548.html
   My bibliography  Save this article

On the Melnikov method for fractional-order systems

Author

Listed:
  • Li, Hang
  • Shen, Yongjun
  • Li, Jian
  • Dong, Jinlu
  • Hong, Guangyang

Abstract

This paper is dedicated to clarifying and introducing the correct application of Melnikov method in fractional dynamics. Attention to the complex dynamics of hyperbolic orbits and to fractional calculus can be, respectively, traced back to Poincaré's attack on the three-body problem a century ago and to the early days of calculus three centuries ago. Nowadays, fractional calculus has been widely applied in modeling dynamic problems across various fields due to its advantages in describing problems with non-locality. Some of these models have also been confirmed to exhibit hyperbolic orbit dynamics, and recently, they have been extensively studied based on Melnikov method, an analytical approach for homoclinic and heteroclinic orbit dynamics. Despite its decade-long application in fractional dynamics, there is a universal problem in these applications that remains to be clarified, i.e., defining fractional-order systems within finite memory boundaries leads to the neglect of perturbation calculation for parts of the stable and unstable manifolds in Melnikov analysis. After clarifying and redefining the problem, a rigorous analytical case is provided for reference. Unlike existing results, the Melnikov criterion here is derived in a globally closed form, which was previously considered unobtainable due to difficulties in the analysis of fractional-order perturbations characterized by convolution integrals with power-law type singular kernels. Finally, numerical methods are employed to verify the derived Melnikov criterion. Overall, the clarification for the problem and the presented case are expected to provide insights for future research in this topic.

Suggested Citation

  • Li, Hang & Shen, Yongjun & Li, Jian & Dong, Jinlu & Hong, Guangyang, 2024. "On the Melnikov method for fractional-order systems," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011548
    DOI: 10.1016/j.chaos.2024.115602
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924011548
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115602?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aslanov, Vladimir S., 2024. "Suppressing chaotic oscillations of a tether anchored to the Phobos surface under the L1 libration point," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Zhang, Lijun & Wang, Jundong & Shchepakina, Elena & Sobolev, Vladimir, 2024. "New solitary waves in a convecting fluid," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    3. Ngounou, A.M. & Mba Feulefack, S.C. & Anague Tabejieu, L.M. & Nana Nbendjo, B.R., 2022. "Design, analysis and horseshoes chaos control on tension leg platform system with fractional nonlinear viscoelastic tendon force under regular sea wave excitation," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Chen, Enli & Xing, Wuce & Wang, Meiqi & Ma, Wenli & Chang, Yujian, 2021. "Study on chaos of nonlinear suspension system with fractional-order derivative under random excitation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Anague Tabejieu, L.M. & Nana Nbendjo, B.R. & Woafo, P., 2016. "On the dynamics of Rayleigh beams resting on fractional-order viscoelastic Pasternak foundations subjected to moving loads," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 39-47.
    6. Li, Hang & Shen, Yongjun & Han, Yanjun & Dong, Jinlu & Li, Jian, 2023. "Determining Lyapunov exponents of fractional-order systems: A general method based on memory principle," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yufeng & Li, Jing & Zhu, Shaotao & Ma, Zerui, 2024. "Harmonic resonance and bifurcation of fractional Rayleigh oscillator with distributed time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 281-297.
    2. Zhou, Biliu & Jin, Yanfei & Xu, Huidong, 2022. "Global dynamics for a class of tristable system with negative stiffness," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Andrade, Dana I. & Specchia, Stefania & Fuziki, Maria E.K. & Oliveira, Jessica R.P. & Tusset, Angelo M. & Lenzi, Giane G., 2024. "Dynamic analysis and SDRE control applied in a mutating autocatalyst with chaotic behavior," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    4. Ngounou, A.M. & Mba Feulefack, S.C. & Anague Tabejieu, L.M. & Nana Nbendjo, B.R., 2022. "Design, analysis and horseshoes chaos control on tension leg platform system with fractional nonlinear viscoelastic tendon force under regular sea wave excitation," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Anague Tabejieu, L.M. & Nana Nbendjo, B.R. & Filatrella, G., 2019. "Effect of the fractional foundation on the response of beam structure submitted to moving and wind loads," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 178-188.
    6. Bukhari, Ayaz Hussain & Raja, Muhammad Asif Zahoor & Alquhayz, Hani & Abdalla, Manal Z.M. & Alhagyan, Mohammed & Gargouri, Ameni & Shoaib, Muhammad, 2023. "Design of intelligent hybrid NAR-GRNN paradigm for fractional order VDP chaotic system in cardiac pacemaker with relaxation oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    7. Calgan, Haris, 2024. "Incommensurate fractional-order analysis of a chaotic system based on interaction between dark matter and dark energy with engineering applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    8. Ávalos-Ruíz, L.F. & Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Cortes-Campos, H.M. & Lavín-Delgado, J.E., 2023. "A RGB image encryption technique using chaotic maps of fractional variable-order based on DNA encoding," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    9. Miwadinou, C.H. & Monwanou, A.V. & Hinvi, L.A. & Chabi Orou, J.B., 2018. "Effect of amplitude modulated signal on chaotic motions in a mixed Rayleigh–Liénard oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 89-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.