IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i10p2312-d1147774.html
   My bibliography  Save this article

Exponentially Convergent Numerical Method for Abstract Cauchy Problem with Fractional Derivative of Caputo Type

Author

Listed:
  • Dmytro Sytnyk

    (Department of Mathematics, Technical University of Munich, 85748 Garching, Germany
    Department of Numerical Mathematics, Institute of Mathematics, National Academy of Sciences, 01024 Kyiv, Ukraine
    The authors contributed equally to this work.)

  • Barbara Wohlmuth

    (Department of Mathematics, Technical University of Munich, 85748 Garching, Germany
    The authors contributed equally to this work.)

Abstract

We present an exponentially convergent numerical method to approximate the solution of the Cauchy problem for the inhomogeneous fractional differential equation with an unbounded operator coefficient and Caputo fractional derivative in time. The numerical method is based on the newly obtained solution formula that consolidates the mild solution representations of sub-parabolic, parabolic and sub-hyperbolic equations with sectorial operator coefficient A and non-zero initial data. The involved integral operators are approximated using the sinc-quadrature formulas that are tailored to the spectral parameters of A , fractional order α and the smoothness of the first initial condition, as well as to the properties of the equation’s right-hand side f ( t ) . The resulting method possesses exponential convergence for positive sectorial A , any finite t , including t = 0 and the whole range α ∈ ( 0 , 2 ) . It is suitable for a practically important case, when no knowledge of f ( t ) is available outside the considered interval t ∈ [ 0 , T ] . The algorithm of the method is capable of multi-level parallelism. We provide numerical examples that confirm the theoretical error estimates.

Suggested Citation

  • Dmytro Sytnyk & Barbara Wohlmuth, 2023. "Exponentially Convergent Numerical Method for Abstract Cauchy Problem with Fractional Derivative of Caputo Type," Mathematics, MDPI, vol. 11(10), pages 1-35, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2312-:d:1147774
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/10/2312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/10/2312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto Garrappa, 2018. "Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial," Mathematics, MDPI, vol. 6(2), pages 1-23, January.
    2. Garrappa, Roberto, 2015. "Trapezoidal methods for fractional differential equations: Theoretical and computational aspects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 110(C), pages 96-112.
    3. Kai Diethelm & Roberto Garrappa & Martin Stynes, 2020. "Good (and Not So Good) Practices in Computational Methods for Fractional Calculus," Mathematics, MDPI, vol. 8(3), pages 1-21, March.
    4. Valentin Keyantuo & Carlos Lizama & Mahamadi Warma, 2013. "Spectral Criteria for Solvability of Boundary Value Problems and Positivity of Solutions of Time-Fractional Differential Equations," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arenas, Abraham J. & González-Parra, Gilberto & Chen-Charpentier, Benito M., 2016. "Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 121(C), pages 48-63.
    2. Das, Saptarshi & Pan, Indranil & Das, Shantanu, 2016. "Effect of random parameter switching on commensurate fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 157-173.
    3. Faïçal Ndaïrou & Delfim F. M. Torres, 2023. "Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems," Mathematics, MDPI, vol. 11(19), pages 1-12, October.
    4. Hansin Bilgili & Chwen Sheu, 2022. "A Bibliometric Review of the Mathematics Journal," Mathematics, MDPI, vol. 10(15), pages 1-17, July.
    5. Wang, Yuan-Ming & Xie, Bo, 2023. "A fourth-order fractional Adams-type implicit–explicit method for nonlinear fractional ordinary differential equations with weakly singular solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 21-48.
    6. Rainey Lyons & Aghalaya S. Vatsala & Ross A. Chiquet, 2017. "Picard’s Iterative Method for Caputo Fractional Differential Equations with Numerical Results," Mathematics, MDPI, vol. 5(4), pages 1-9, November.
    7. Yang, Changqing, 2023. "Improved spectral deferred correction methods for fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Jannelli, Alessandra, 2024. "A finite difference method on quasi-uniform grids for the fractional boundary-layer Blasius flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 382-398.
    9. Fiaz, Muhammad & Aqeel, Muhammad & Marwan, Muhammad & Sabir, Muhammad, 2022. "Integer and fractional order analysis of a 3D system and generalization of synchronization for a class of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    10. Hamdan, Nur ’Izzati & Kilicman, Adem, 2018. "A fractional order SIR epidemic model for dengue transmission," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 55-62.
    11. Čermák, Jan & Nechvátal, Luděk, 2019. "Stability and chaos in the fractional Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 24-33.
    12. Kai Diethelm, 2022. "A New Diffusive Representation for Fractional Derivatives, Part II: Convergence Analysis of the Numerical Scheme," Mathematics, MDPI, vol. 10(8), pages 1-12, April.
    13. Özköse, Fatma & Yavuz, Mehmet & Şenel, M. Tamer & Habbireeh, Rafla, 2022. "Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    14. Bonab, Zahra Farzaneh & Javidi, Mohammad, 2020. "Higher order methods for fractional differential equation based on fractional backward differentiation formula of order three," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 71-89.
    15. Mangal, Shiv & Misra, O.P. & Dhar, Joydip, 2023. "Fractional-order deterministic epidemic model for the spread and control of HIV/AIDS with special reference to Mexico and India," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 82-102.
    16. Cao, Dewei & Chen, Hu, 2023. "Error analysis of a finite difference method for the distributed order sub-diffusion equation using discrete comparison principle," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 109-117.
    17. J. Alberto Conejero & Jonathan Franceschi & Enric Picó-Marco, 2022. "Fractional vs. Ordinary Control Systems: What Does the Fractional Derivative Provide?," Mathematics, MDPI, vol. 10(15), pages 1-18, August.
    18. Roberto Garrappa, 2018. "Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial," Mathematics, MDPI, vol. 6(2), pages 1-23, January.
    19. Kai Diethelm & Roberto Garrappa & Martin Stynes, 2020. "Good (and Not So Good) Practices in Computational Methods for Fractional Calculus," Mathematics, MDPI, vol. 8(3), pages 1-21, March.
    20. Sowa, Marcin, 2018. "Application of SubIval in solving initial value problems with fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 86-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2312-:d:1147774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.