IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i23p3004-d686160.html
   My bibliography  Save this article

Fast-Slow Coupling Dynamics Behavior of the van der Pol-Rayleigh System

Author

Listed:
  • Danjin Zhang

    (College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China)

  • Youhua Qian

    (College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China)

Abstract

In this paper, the dynamic behavior of the van der Pol-Rayleigh system is studied by using the fast–slow analysis method and the transformation phase portrait method. Firstly, the stability and bifurcation behavior of the equilibrium point of the system are analyzed. We find that the system has no fold bifurcation, but has Hopf bifurcation. By calculating the first Lyapunov coefficient, the bifurcation direction and stability of the Hopf bifurcation are obtained. Moreover, the bifurcation diagram of the system with respect to the external excitation is drawn. Then, the fast subsystem is simulated numerically and analyzed with or without external excitation. Finally, the vibration behavior and its generation mechanism of the system in different modes are analyzed. The vibration mode of the system is affected by both the fast and slow varying processes. The mechanisms of different modes of vibration of the system are revealed by the transformation phase portrait method, because the system trajectory will encounter different types of attractors in the fast subsystem.

Suggested Citation

  • Danjin Zhang & Youhua Qian, 2021. "Fast-Slow Coupling Dynamics Behavior of the van der Pol-Rayleigh System," Mathematics, MDPI, vol. 9(23), pages 1-13, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3004-:d:686160
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/23/3004/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/23/3004/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bao, B.C. & Wu, P.Y. & Bao, H. & Wu, H.G. & Zhang, X. & Chen, M., 2018. "Symmetric periodic bursting behavior and bifurcation mechanism in a third-order memristive diode bridge-based oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 146-153.
    2. Luo, Albert C.J. & Xing, Siyuan, 2016. "Multiple bifurcation trees of period-1 motions to chaos in a periodically forced, time-delayed, hardening Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 405-434.
    3. Zhou, Liangqiang & Chen, Fangqi, 2022. "Chaos of the Rayleigh–Duffing oscillator with a non-smooth periodic perturbation and harmonic excitation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, H.G. & Ye, Y. & Bao, B.C. & Chen, M. & Xu, Q., 2019. "Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 178-185.
    2. Lin, Y. & Liu, W.B. & Bao, H. & Shen, Q., 2020. "Bifurcation mechanism of periodic bursting in a simple three-element-based memristive circuit with fast-slow effect," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    3. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Tchitnga, R. & Mezatio, B.A. & Fozin, T. Fonzin & Kengne, R. & Louodop Fotso, P.H. & Fomethe, A., 2019. "A novel hyperchaotic three-component oscillator operating at high frequency," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 166-180.
    5. He, Ji-Huan & Jiao, Man-Li & Gepreel, Khaled A. & Khan, Yasir, 2023. "Homotopy perturbation method for strongly nonlinear oscillators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 243-258.
    6. Wang, Donghua & Huang, Jianzhe, 2017. "Periodic motions and chaos for a damped mobile piston system in a high pressure gas cylinder with P control," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 168-178.
    7. Wen, Zihao & Li, Zhijun & Li, Xiang, 2019. "Bursting oscillations and bifurcation mechanism in memristor-based Shimizu–Morioka system with two time scales," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 58-70.
    8. Danjin Zhang & Youhua Qian, 2023. "Bursting Oscillations in General Coupled Systems: A Review," Mathematics, MDPI, vol. 11(7), pages 1-16, April.
    9. Zhao, Heqi & Ma, Xindong & Yang, Weijie & Zhang, Zhao & Bi, Qinsheng, 2023. "The mechanism of periodic and chaotic bursting patterns in an externally excited memcapacitive system," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    10. Ningning Yang & Shucan Cheng & Chaojun Wu & Rong Jia & Chongxin Liu, 2019. "Dynamic Behaviors Analysis of a Chaotic Circuit Based on a Novel Fractional-Order Generalized Memristor," Complexity, Hindawi, vol. 2019, pages 1-15, May.
    11. Zhou, Chengyi & Xie, Fei & Li, Zhijun, 2020. "Complex bursting patterns and fast-slow analysis in a smallest chemical reaction system with two slow parametric excitations," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    12. Bao, Bocheng & Zhang, Xi & Bao, Han & Wu, Pingye & Wu, Zhimin & Chen, Mo, 2019. "Dynamical effects of memristive load on peak current mode buck-boost switching converter," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 69-79.
    13. Zhang, Yufeng & Li, Jing & Zhu, Shaotao & Ma, Zerui, 2024. "Harmonic resonance and bifurcation of fractional Rayleigh oscillator with distributed time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 281-297.
    14. Lin, Yi & Liu, Wenbo & Hang, Cheng, 2023. "Revelation and experimental verification of quasi-periodic bursting, periodic bursting, periodic oscillation in third-order non-autonomous memristive FitzHugh-Nagumo neuron circuit," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    15. Zhang, Xiufang & Yao, Zhao & Guo, Yeye & Wang, Chunni, 2021. "Target wave in the network coupled by thermistors," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3004-:d:686160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.