Evaluation of Fractional Integrals and Derivatives of Elementary Functions: Overview and Tutorial
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mariusz Ciesielski & Tomasz Blaszczyk, 2018. "An Exact Solution of the Second-Order Differential Equation with the Fractional/Generalised Boundary Conditions," Advances in Mathematical Physics, Hindawi, vol. 2018, pages 1-9, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Yufeng & Li, Jing & Zhu, Shaotao & Ma, Zerui, 2024. "Harmonic resonance and bifurcation of fractional Rayleigh oscillator with distributed time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 281-297.
- Abdelhamid Mohammed Djaouti & Zareen A. Khan & Muhammad Imran Liaqat & Ashraf Al-Quran, 2024. "A Study of Some Generalized Results of Neutral Stochastic Differential Equations in the Framework of Caputo–Katugampola Fractional Derivatives," Mathematics, MDPI, vol. 12(11), pages 1-20, May.
- Ruslan Abdulkadirov & Pavel Lyakhov & Nikolay Nagornov, 2023. "Survey of Optimization Algorithms in Modern Neural Networks," Mathematics, MDPI, vol. 11(11), pages 1-37, May.
- Enrica Pirozzi, 2022. "On a Fractional Stochastic Risk Model with a Random Initial Surplus and a Multi-Layer Strategy," Mathematics, MDPI, vol. 10(4), pages 1-18, February.
- Shiri, Babak & Baleanu, Dumitru, 2023. "All linear fractional derivatives with power functions’ convolution kernel and interpolation properties," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
- Virginia Kiryakova, 2020. "Unified Approach to Fractional Calculus Images of Special Functions—A Survey," Mathematics, MDPI, vol. 8(12), pages 1-35, December.
- Virginia Kiryakova, 2021. "A Guide to Special Functions in Fractional Calculus," Mathematics, MDPI, vol. 9(1), pages 1-40, January.
- Daniele Mortari & Roberto Garrappa & Luigi Nicolò, 2023. "Theory of Functional Connections Extended to Fractional Operators," Mathematics, MDPI, vol. 11(7), pages 1-18, April.
- Ngueuteu Mbouna, S.G. & Banerjee, Tanmoy & Yamapi, René & Woafo, Paul, 2022. "Diverse chimera and symmetry-breaking patterns induced by fractional derivation effect in a network of Stuart-Landau oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.More about this item
Keywords
fractional derivative; fractional integral; Mittag–Leffler function; Riemann–Liouville derivative; Caputo derivative; Grünwald–Letnikov derivative;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:5:p:407-:d:228974. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.