IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v93y2016icp39-47.html
   My bibliography  Save this article

On the dynamics of Rayleigh beams resting on fractional-order viscoelastic Pasternak foundations subjected to moving loads

Author

Listed:
  • Anague Tabejieu, L.M.
  • Nana Nbendjo, B.R.
  • Woafo, P.

Abstract

The standard averaging method is used to provide an analytical explanation on the effects of spacing loads, load velocity, order of the fractional viscoelastic property of shear layer material on the amplitude of the beam. The geometric nonlinearity is taken into account in the model. The analysis shows that, when the moving loads are uniformly distributed upon all the length of the structure, it vibrates the least possible. Moreover, as the order of the derivative increases, the resonant amplitude of the beam vibration decreases. In other hand, by means of Melnikov technique, a necessary condition for onset of horseshoes chaos resulting from heteroclinic bifurcation is derived analytically. We point out the critical weight of moving loads and order of the fractional derivative above which the system becomes unstable.

Suggested Citation

  • Anague Tabejieu, L.M. & Nana Nbendjo, B.R. & Woafo, P., 2016. "On the dynamics of Rayleigh beams resting on fractional-order viscoelastic Pasternak foundations subjected to moving loads," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 39-47.
  • Handle: RePEc:eee:chsofr:v:93:y:2016:i:c:p:39-47
    DOI: 10.1016/j.chaos.2016.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077916302880
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kingni, S.T. & Nana, B. & Mbouna Ngueuteu, G.S. & Woafo, P. & Danckaert, J., 2015. "Bursting oscillations in a 3D system with asymmetrically distributed equilibria: Mechanism, electronic implementation and fractional derivation effect," Chaos, Solitons & Fractals, Elsevier, vol. 71(C), pages 29-40.
    2. An, Fengxian & Chen, Fangqi, 2016. "Bifurcations and chaos of the nonlinear viscoelastic plates subjected to subsonic flow and external loads," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 78-85.
    3. Lokenath Debnath, 2003. "Recent applications of fractional calculus to science and engineering," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2003, pages 1-30, January.
    4. Nana Nbendjo, B.R. & Woafo, P., 2007. "Active control with delay of horseshoes chaos using piezoelectric absorber on a buckled beam under parametric excitation," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 73-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yufeng & Li, Jing & Zhu, Shaotao & Ma, Zerui, 2024. "Harmonic resonance and bifurcation of fractional Rayleigh oscillator with distributed time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 281-297.
    2. Ngounou, A.M. & Mba Feulefack, S.C. & Anague Tabejieu, L.M. & Nana Nbendjo, B.R., 2022. "Design, analysis and horseshoes chaos control on tension leg platform system with fractional nonlinear viscoelastic tendon force under regular sea wave excitation," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Miwadinou, C.H. & Monwanou, A.V. & Hinvi, L.A. & Chabi Orou, J.B., 2018. "Effect of amplitude modulated signal on chaotic motions in a mixed Rayleigh–Liénard oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 89-101.
    4. Anague Tabejieu, L.M. & Nana Nbendjo, B.R. & Filatrella, G., 2019. "Effect of the fractional foundation on the response of beam structure submitted to moving and wind loads," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 178-188.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Musrrat Ali & Hemant Gandhi & Amit Tomar & Dimple Singh, 2023. "Similarity Solution for a System of Fractional-Order Coupled Nonlinear Hirota Equations with Conservation Laws," Mathematics, MDPI, vol. 11(11), pages 1-14, May.
    2. Xing, Sheng Yan & Lu, Jun Guo, 2009. "Robust stability and stabilization of fractional-order linear systems with nonlinear uncertain parameters: An LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1163-1169.
    3. Hamdi, Mustapha & Belhaq, Mohamed, 2009. "Self-excited vibration control for axially fast excited beam by a time delay state feedback," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 521-532.
    4. Lin, Y. & Liu, W.B. & Bao, H. & Shen, Q., 2020. "Bifurcation mechanism of periodic bursting in a simple three-element-based memristive circuit with fast-slow effect," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    5. Liaqat, Muhammad Imran & Akgül, Ali, 2022. "A novel approach for solving linear and nonlinear time-fractional Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2021. "A practical numerical approach to solve a fractional Lotka–Volterra population model with non-singular and singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    9. Jehad Alzabut & Weerawat Sudsutad & Zeynep Kayar & Hamid Baghani, 2019. "A New Gronwall–Bellman Inequality in Frame of Generalized Proportional Fractional Derivative," Mathematics, MDPI, vol. 7(8), pages 1-15, August.
    10. Iyiola, O.S. & Tasbozan, O. & Kurt, A. & Çenesiz, Y., 2017. "On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 1-7.
    11. Anague Tabejieu, L.M. & Nana Nbendjo, B.R. & Filatrella, G., 2019. "Effect of the fractional foundation on the response of beam structure submitted to moving and wind loads," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 178-188.
    12. Ning, Xin & Ma, Yanyan & Li, Shuai & Zhang, Jingmin & Li, Yifei, 2018. "Response of non-linear oscillator driven by fractional derivative term under Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 102-107.
    13. Kingni, Sifeu Takougang & Jafari, Sajad & Pham, Viet-Thanh & Woafo, Paul, 2017. "Constructing and analyzing of a unique three-dimensional chaotic autonomous system exhibiting three families of hidden attractors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 172-182.
    14. Bao, B.C. & Wu, P.Y. & Bao, H. & Xu, Q. & Chen, M., 2018. "Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 161-170.
    15. Tchitnga, R. & Mezatio, B.A. & Fozin, T. Fonzin & Kengne, R. & Louodop Fotso, P.H. & Fomethe, A., 2019. "A novel hyperchaotic three-component oscillator operating at high frequency," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 166-180.
    16. Mian Bahadur Zada & Muhammad Sarwar & Thabet Abdeljawad & Aiman Mukheimer, 2021. "Coupled Fixed Point Results in Banach Spaces with Applications," Mathematics, MDPI, vol. 9(18), pages 1-12, September.
    17. Lashkarian, Elham & Reza Hejazi, S., 2017. "Group analysis of the time fractional generalized diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 572-579.
    18. Kumar, Devendra & Nama, Hunney & Baleanu, Dumitru, 2024. "Dynamical and computational analysis of fractional order mathematical model for oscillatory chemical reaction in closed vessels," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    19. Majumdar, Prahlad & Mondal, Bapin & Debnath, Surajit & Ghosh, Uttam, 2022. "Controlling of periodicity and chaos in a three dimensional prey predator model introducing the memory effect," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Maneesha Gupta & Richa Yadav, 2013. "Optimization of Integer Order Integrators for Deriving Improved Models of Their Fractional Counterparts," Journal of Optimization, Hindawi, vol. 2013, pages 1-11, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:93:y:2016:i:c:p:39-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.