IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v73y2021ics0301420721001641.html
   My bibliography  Save this article

Simultaneous production scheduling and transportation optimization from mines to port under uncertain material supply

Author

Listed:
  • LaRoche-Boisvert, Mélanie
  • Dimitrakopoulos, Roussos
  • Ferland, Jacques A.

Abstract

Industrial mining complexes can be optimized using simultaneous stochastic optimization (SSO), which manages the risks associated with meeting production targets while capitalizing on the synergies that exist between the various components of the related mineral value chain. This paper introduces an extension of past SSO approaches for the long-term, allowing to simultaneously optimize the schedule of the production and the mines-to-port transportation of mining complexes under uncertain material supply. The inclusion of mine-to-port transportation scheduling facilitates the analysis of the mines-to-port equipment usage, while generating suitable mine production schedules. The proposed stochastic mathematical program formulation is applied to a two-mine, single-port iron ore mining complex. In doing so, it is shown that the related model is capable of producing optimal production schedules, minimizing deviations from products requirements, and delineating the yearly use of the mine-to-port transportation equipment.

Suggested Citation

  • LaRoche-Boisvert, Mélanie & Dimitrakopoulos, Roussos & Ferland, Jacques A., 2021. "Simultaneous production scheduling and transportation optimization from mines to port under uncertain material supply," Resources Policy, Elsevier, vol. 73(C).
  • Handle: RePEc:eee:jrpoli:v:73:y:2021:i:c:s0301420721001641
    DOI: 10.1016/j.resourpol.2021.102150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420721001641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2021.102150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gleb Belov & Natashia L. Boland & Martin W. P. Savelsbergh & Peter J. Stuckey, 2020. "Logistics optimization for a coal supply chain," Journal of Heuristics, Springer, vol. 26(2), pages 269-300, April.
    2. Everett, J. E., 2001. "Iron ore production scheduling to improve product quality," European Journal of Operational Research, Elsevier, vol. 129(2), pages 355-361, March.
    3. Del Castillo, M. Fernanda & Dimitrakopoulos, Roussos, 2019. "Dynamically optimizing the strategic plan of mining complexes under supply uncertainty," Resources Policy, Elsevier, vol. 60(C), pages 83-93.
    4. Montiel, Luis & Dimitrakopoulos, Roussos, 2015. "Optimizing mining complexes with multiple processing and transportation alternatives: An uncertainty-based approach," European Journal of Operational Research, Elsevier, vol. 247(1), pages 166-178.
    5. Gaurav Singh & Rodolfo García-Flores & Andreas Ernst & Palitha Welgama & Meimei Zhang & Kerry Munday, 2014. "Medium-Term Rail Scheduling for an Iron Ore Mining Company," Interfaces, INFORMS, vol. 44(2), pages 222-240, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    2. Huang, Xiaohui & Huang, Qi & Cao, Huajun & Yan, Wanbin & Cao, Le & Zhang, Qiongzhi, 2023. "Optimal design for improving operation performance of electric construction machinery collaborative system: Method and application," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    2. Rimélé, Adrien & Dimitrakopoulos, Roussos & Gamache, Michel, 2020. "A dynamic stochastic programming approach for open-pit mine planning with geological and commodity price uncertainty," Resources Policy, Elsevier, vol. 65(C).
    3. Nelis, Gonzalo & Morales, Nelson & Jelvez, Enrique, 2023. "Optimal mining cut definition and short-term open pit production scheduling under geological uncertainty," Resources Policy, Elsevier, vol. 81(C).
    4. Franco-Sepúlveda, Giovanni & Del Rio-Cuervo, Juan Camilo & Pachón-Hernández, María Angélica, 2019. "State of the art about metaheuristics and artificial neural networks applied to open pit mining," Resources Policy, Elsevier, vol. 60(C), pages 125-133.
    5. Del Castillo, Maria Fernanda & Dimitrakopoulos, Roussos, 2016. "A multivariate destination policy for geometallurgical variables in mineral value chains using coalition-formation clustering," Resources Policy, Elsevier, vol. 50(C), pages 322-332.
    6. Lu Chen & Qinghua Gu & Rui Wang & Zhidong Feng & Chao Zhang, 2022. "Comprehensive Utilization of Mineral Resources: Optimal Blending of Polymetallic Ore Using an Improved NSGA-III Algorithm," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    7. Shashank Vaid & Michael Ahearne & Ryan Krause, 2021. "Operations‐Related Structural Flux: Firm Performance Effects of Executives’ Appointments and Exits," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2188-2210, July.
    8. Ashish Kumar & Roussos Dimitrakopoulos & Marco Maulen, 2020. "Adaptive self-learning mechanisms for updating short-term production decisions in an industrial mining complex," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1795-1811, October.
    9. Everett, J.E., 2007. "Computer aids for production systems management in iron ore mining," International Journal of Production Economics, Elsevier, vol. 110(1-2), pages 213-223, October.
    10. Michelle L. Blom & Christina N. Burt & Adrian R. Pearce & Peter J. Stuckey, 2014. "A Decomposition-Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 658-676, November.
    11. Nesbitt, Peter & Blake, Lewis R. & Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo K. & Newman, Alexandra & Brickey, Andrea, 2021. "Underground mine scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 294(1), pages 340-352.
    12. Noriega, Roberto & Pourrahimian, Yashar, 2022. "A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning," Resources Policy, Elsevier, vol. 77(C).
    13. Madziwa, Lawrence & Pillalamarry, Mallikarjun & Chatterjee, Snehamoy, 2023. "Integrating stochastic mine planning model with ARDL commodity price forecasting," Resources Policy, Elsevier, vol. 85(PB).
    14. Del Castillo, M. Fernanda & Dimitrakopoulos, Roussos, 2019. "Dynamically optimizing the strategic plan of mining complexes under supply uncertainty," Resources Policy, Elsevier, vol. 60(C), pages 83-93.
    15. Lorenzo Reus & Mathias Belbèze & Hans Feddersen & Enrique Rubio, 2018. "Extraction Planning Under Capacity Uncertainty at the Chuquicamata Underground Mine," Interfaces, INFORMS, vol. 48(6), pages 543-555, November.
    16. Sylvie C. Bouffard & Peter Boggis & Bryan Monk & Marianela Pereira & Keith Quan & Sandra Fleming, 2017. "Discrete-Event Simulation Modeling Unlocks Value for the Jansen Potash Project," Decision Analysis, INFORMS, vol. 48(01), pages 45-56, February.
    17. Li, Dan & Chen, Jing & Chen, Bintong & Liao, Yi, 2022. "Manufacturer’s contract choice and retailer’s returns management strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    18. Gaurav Singh & Rodolfo García-Flores & Andreas Ernst & Palitha Welgama & Meimei Zhang & Kerry Munday, 2014. "Medium-Term Rail Scheduling for an Iron Ore Mining Company," Interfaces, INFORMS, vol. 44(2), pages 222-240, April.
    19. Belkina Iryna A. & Kochura Yevhen V., 2013. "Study of dependence of income and profit of the ore mining and processing enterprise on organisation of ore supply," The Problems of Economy, RESEARCH CENTRE FOR INDUSTRIAL DEVELOPMENT PROBLEMS of NAS (KHARKIV, UKRAINE), issue 4, pages 229-236.
    20. Moradi Afrapoli, Ali & Tabesh, Mohammad & Askari-Nasab, Hooman, 2019. "A multiple objective transportation problem approach to dynamic truck dispatching in surface mines," European Journal of Operational Research, Elsevier, vol. 276(1), pages 331-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:73:y:2021:i:c:s0301420721001641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.