IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p9819-d883763.html
   My bibliography  Save this article

The Application of Stochastic Mine Production Scheduling in the Presence of Geological Uncertainty

Author

Listed:
  • Devendra Joshi

    (Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, Andhra Pradesh, India)

  • Hamed Gholami

    (Department of Manufacturing and Industrial Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia)

  • Hitesh Mohapatra

    (School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar 751024, Odisha, India)

  • Anis Ali

    (Department of Management, College of Business Administration, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia)

  • Dalia Streimikiene

    (Kaunas Faculty, Vilnius University, Muitines 8, LT-44280 Kaunas, Lithuania)

  • Susanta Kumar Satpathy

    (Department of Computer Science and Engineering, Vignan’s Foundation for Science, Technology and Research, Vadlamudi 522213, Andhra Pradesh, India)

  • Arvind Yadav

    (Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, Andhra Pradesh, India)

Abstract

The scheduling of open-pit mine production is a large-scale, mixed-integer linear programming problem that is computationally expensive. The purpose of this study is to create a computationally efficient algorithm for solving open-pit production scheduling problems with uncertain geological parameters. To demonstrate the effectiveness of the proposed research, a case study of an Indian iron ore mine is presented. Multiple realizations of the resource models were developed and integrated within the stochastic production scheduling framework to capture uncertainty and incorporate it into the mine plan. In this case study, two hybrid methods were developed to evaluate their performance. Model 1 is a combined branch and cut with the longest path, whereas Model 2 is a sequential parametric maximum flow and branch and cut. The results show that both methods produce similar materials, ore, metal, and risk profiles; however, Model 2 generates slightly more (4 percent) discounted cash flow from this study mine than Model 1. The results also show that Model 2’s computational time is 46.64 percent less than that of Model 1.

Suggested Citation

  • Devendra Joshi & Hamed Gholami & Hitesh Mohapatra & Anis Ali & Dalia Streimikiene & Susanta Kumar Satpathy & Arvind Yadav, 2022. "The Application of Stochastic Mine Production Scheduling in the Presence of Geological Uncertainty," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:9819-:d:883763
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/9819/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/9819/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lamghari, Amina & Dimitrakopoulos, Roussos, 2016. "Network-flow based algorithms for scheduling production in multi-processor open-pit mines accounting for metal uncertainty," European Journal of Operational Research, Elsevier, vol. 250(1), pages 273-290.
    2. Aleksandr Rakhmangulov & Konstantin Burmistrov & Nikita Osintsev, 2021. "Sustainable Open Pit Mining and Technical Systems: Concept, Principles, and Indicators," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    3. Dorit S. Hochbaum & Anna Chen, 2000. "Performance Analysis and Best Implementations of Old and New Algorithms for the Open-Pit Mining Problem," Operations Research, INFORMS, vol. 48(6), pages 894-914, December.
    4. Krzysztof Skrzypkowski, 2019. "The Influence of Room and Pillar Method Geometry on the Deposit Utilization Rate and Rock Bolt Load," Energies, MDPI, vol. 12(24), pages 1-15, December.
    5. Chatterjee, Snehamoy & Sethi, Manas Ranjan & Asad, Mohammad Waqar Ali, 2016. "Production phase and ultimate pit limit design under commodity price uncertainty," European Journal of Operational Research, Elsevier, vol. 248(2), pages 658-667.
    6. Gilani, Seyyed-Omid & Sattarvand, Javad & Hajihassani, Mohsen & Abdullah, Shahrum Shah, 2020. "A stochastic particle swarm based model for long term production planning of open pit mines considering the geological uncertainty," Resources Policy, Elsevier, vol. 68(C).
    7. Lamghari, Amina & Dimitrakopoulos, Roussos, 2012. "A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty," European Journal of Operational Research, Elsevier, vol. 222(3), pages 642-652.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nelis, Gonzalo & Morales, Nelson & Jelvez, Enrique, 2023. "Optimal mining cut definition and short-term open pit production scheduling under geological uncertainty," Resources Policy, Elsevier, vol. 81(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian & Nault, Barrie R. & Dimitrakopoulos, Roussos G., 2019. "Optimizing a mineral value chain with market uncertainty using benders decomposition," European Journal of Operational Research, Elsevier, vol. 274(1), pages 227-239.
    2. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    3. Zhang, Jian & Dimitrakopoulos, Roussos G., 2017. "A dynamic-material-value-based decomposition method for optimizing a mineral value chain with uncertainty," European Journal of Operational Research, Elsevier, vol. 258(2), pages 617-625.
    4. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan & Asad, Mohammad Waqar Ali, 2020. "Simultaneous stochastic optimization of production sequence and dynamic cut-off grades in an open pit mining operation," Resources Policy, Elsevier, vol. 66(C).
    5. Franco-Sepúlveda, Giovanni & Del Rio-Cuervo, Juan Camilo & Pachón-Hernández, María Angélica, 2019. "State of the art about metaheuristics and artificial neural networks applied to open pit mining," Resources Policy, Elsevier, vol. 60(C), pages 125-133.
    6. Chatterjee, Snehamoy & Sethi, Manas Ranjan & Asad, Mohammad Waqar Ali, 2016. "Production phase and ultimate pit limit design under commodity price uncertainty," European Journal of Operational Research, Elsevier, vol. 248(2), pages 658-667.
    7. Kamyar Tolouei & Ehsan Moosavi & Mehran Gholinejad, 2024. "Solving LTPSOP in open-pit mines using Gaussian process and human mental search," OPSEARCH, Springer;Operational Research Society of India, vol. 61(3), pages 1061-1092, September.
    8. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A methodology for the large-scale multi-period precedence-constrained knapsack problem: an application in the mining industry," International Journal of Production Economics, Elsevier, vol. 193(C), pages 12-20.
    9. Noriega, Roberto & Pourrahimian, Yashar, 2022. "A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning," Resources Policy, Elsevier, vol. 77(C).
    10. Madziwa, Lawrence & Pillalamarry, Mallikarjun & Chatterjee, Snehamoy, 2023. "Integrating stochastic mine planning model with ARDL commodity price forecasting," Resources Policy, Elsevier, vol. 85(PB).
    11. Devendra Joshi & Marwan Ali Albahar & Premkumar Chithaluru & Aman Singh & Arvind Yadav & Yini Miro, 2022. "A Novel Approach to Integrating Uncertainty into a Push Re-Label Network Flow Algorithm for Pit Optimization," Mathematics, MDPI, vol. 10(24), pages 1-20, December.
    12. Madziwa, Lawrence & Pillalamarry, Mallikarjun & Chatterjee, Snehamoy, 2023. "Integrating flexibility in open pit mine planning to survive commodity price decline," Resources Policy, Elsevier, vol. 81(C).
    13. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan, 2021. "Open-pit mining complex optimization under uncertainty with integrated cut-off grade based destination policies," Resources Policy, Elsevier, vol. 70(C).
    14. Rafael Epstein & Marcel Goic & Andrés Weintraub & Jaime Catalán & Pablo Santibáñez & Rodolfo Urrutia & Raúl Cancino & Sergio Gaete & Augusto Aguayo & Felipe Caro, 2012. "Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines," Operations Research, INFORMS, vol. 60(1), pages 4-17, February.
    15. Ivorra, Benjamin & Mohammadi, Bijan & Manuel Ramos, Angel, 2015. "A multi-layer line search method to improve the initialization of optimization algorithms," European Journal of Operational Research, Elsevier, vol. 247(3), pages 711-720.
    16. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    17. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    18. M Kumral & P A Dowd, 2005. "A simulated annealing approach to mine production scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 922-930, August.
    19. Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni, 2023. "A review of state-of-the-art techniques for the determination of the optimum cut-off grade of a metalliferous deposit with a bibliometric mapping in a surface mine planning context," Resources Policy, Elsevier, vol. 83(C).
    20. César Flores-Fonseca & Rodrigo Linfati & John Willmer Escobar, 2022. "Exact algorithms for production planning in mining considering the use of stockpiles and sequencing of power shovels in open-pit mines," Operational Research, Springer, vol. 22(3), pages 2529-2553, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:9819-:d:883763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.