IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v44y2014i2p176-194.html
   My bibliography  Save this article

Medium-Term Production Scheduling of the Lumwana Mining Complex

Author

Listed:
  • Martin L. Smith

    (MineSmith Pty., Ltd., Kenmore, Queensland 4069, Australia)

  • Stewart J. Wicks

    (MineSmith Pty., Ltd., Kenmore, Queensland 4069, Australia)

Abstract

In this paper, we discuss our development of a life-of-mine production plan for Barrick Gold Corporation’s Lumwana operation, a large copper mining complex based on the Chimiwungo and Malundwe reserves. In our production plan, we maximize recovered copper metal based on a mixed-integer program (MIP) formulation with reserve aggregations that approximate those used in operational mine planning. We discuss the application of a MIP to medium-term planning based on a 60-month production schedule. Constraints on shovel placement, uranium levels in mill feed, stockpiling and mining, and processing capacity ensure that the resulting production schedules and resource allocation are operationally feasible. At Lumwana, our MIP solution strategies optimize the scheduling problem at two levels of time and production-volume granularity. A coarse solution based on annual production from aggregated reserve blocks sets the overall production strategy. This strategy is then imposed on a schedule of monthly production for the scheduling volumes used in actual production planning. This problem was not solvable as a single multiperiod monolith. Instead, we solved a sequence of overlapping multiperiod problems in which each subproblem advances the schedule horizon a given number of periods while fixing the solution to the initial periods of the previous subproblem. We solve multiple options relating to production capacity with a life-of-business optimization system (LOBOS) that we developed.

Suggested Citation

  • Martin L. Smith & Stewart J. Wicks, 2014. "Medium-Term Production Scheduling of the Lumwana Mining Complex," Interfaces, INFORMS, vol. 44(2), pages 176-194, April.
  • Handle: RePEc:inm:orinte:v:44:y:2014:i:2:p:176-194
    DOI: 10.1287/inte.2014.0737
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2014.0737
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2014.0737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rafael Epstein & Marcel Goic & Andrés Weintraub & Jaime Catalán & Pablo Santibáñez & Rodolfo Urrutia & Raúl Cancino & Sergio Gaete & Augusto Aguayo & Felipe Caro, 2012. "Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines," Operations Research, INFORMS, vol. 60(1), pages 4-17, February.
    2. Robert Bixby & Edward Rothberg, 2007. "Progress in computational mixed integer programming—A look back from the other side of the tipping point," Annals of Operations Research, Springer, vol. 149(1), pages 37-41, February.
    3. W. Matthew Carlyle & B. Curtis Eaves, 2001. "Underground Planning at Stillwater Mining Company," Interfaces, INFORMS, vol. 31(4), pages 50-60, August.
    4. Alexandra M. Newman & Enrique Rubio & Rodrigo Caro & Andrés Weintraub & Kelly Eurek, 2010. "A Review of Operations Research in Mine Planning," Interfaces, INFORMS, vol. 40(3), pages 222-245, June.
    5. W. Brian Lambert & Andrea Brickey & Alexandra M. Newman & Kelly Eurek, 2014. "Open-Pit Block-Sequencing Formulations: A Tutorial," Interfaces, INFORMS, vol. 44(2), pages 127-142, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moreno, Eduardo & Rezakhah, Mojtaba & Newman, Alexandra & Ferreira, Felipe, 2017. "Linear models for stockpiling in open-pit mine production scheduling problems," European Journal of Operational Research, Elsevier, vol. 260(1), pages 212-221.
    2. Cinna Seifi & Marco Schulze & Jürgen Zimmermann, 2021. "Solution procedures for block selection and sequencing in flat-bedded potash underground mines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 409-440, June.
    3. Tabesh, Mohammad & Moradi Afrapoli, Ali & Askari-Nasab, Hooman, 2023. "A two-stage simultaneous optimization of NPV and throughput in production planning of open pit mines," Resources Policy, Elsevier, vol. 80(C).
    4. Pérez, Juan & Maldonado, Sebastián & González-Ramírez, Rosa, 2018. "Decision support for fleet allocation and contract renegotiation in contracted open-pit mine blasting operations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 59-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. O’Sullivan, Dónal & Newman, Alexandra, 2015. "Optimization-based heuristics for underground mine scheduling," European Journal of Operational Research, Elsevier, vol. 241(1), pages 248-259.
    2. Lorenzo Reus & Mathias Belbèze & Hans Feddersen & Enrique Rubio, 2018. "Extraction Planning Under Capacity Uncertainty at the Chuquicamata Underground Mine," Interfaces, INFORMS, vol. 48(6), pages 543-555, November.
    3. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    4. Michelle L. Blom & Adrian R. Pearce & Peter J. Stuckey, 2016. "A Decomposition-Based Algorithm for the Scheduling of Open-Pit Networks Over Multiple Time Periods," Management Science, INFORMS, vol. 62(10), pages 3059-3084, October.
    5. Marco Schulze & Julia Rieck & Cinna Seifi & Jürgen Zimmermann, 2016. "Machine scheduling in underground mining: an application in the potash industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(2), pages 365-403, March.
    6. Rafael Epstein & Marcel Goic & Andrés Weintraub & Jaime Catalán & Pablo Santibáñez & Rodolfo Urrutia & Raúl Cancino & Sergio Gaete & Augusto Aguayo & Felipe Caro, 2012. "Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines," Operations Research, INFORMS, vol. 60(1), pages 4-17, February.
    7. César Flores-Fonseca & Rodrigo Linfati & John Willmer Escobar, 2022. "Exact algorithms for production planning in mining considering the use of stockpiles and sequencing of power shovels in open-pit mines," Operational Research, Springer, vol. 22(3), pages 2529-2553, July.
    8. W. Brian Lambert & Andrea Brickey & Alexandra M. Newman & Kelly Eurek, 2014. "Open-Pit Block-Sequencing Formulations: A Tutorial," Interfaces, INFORMS, vol. 44(2), pages 127-142, April.
    9. Alexandra M. Newman & Enrique Rubio & Rodrigo Caro & Andrés Weintraub & Kelly Eurek, 2010. "A Review of Operations Research in Mine Planning," Interfaces, INFORMS, vol. 40(3), pages 222-245, June.
    10. Nancel-Penard, Pierre & Morales, Nelson & Cornillier, Fabien, 2022. "A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1088-1099.
    11. Pérez, Juan & Maldonado, Sebastián & González-Ramírez, Rosa, 2018. "Decision support for fleet allocation and contract renegotiation in contracted open-pit mine blasting operations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 59-69.
    12. Michelle L. Blom & Christina N. Burt & Adrian R. Pearce & Peter J. Stuckey, 2014. "A Decomposition-Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 658-676, November.
    13. Thomas W. M. Vossen & R. Kevin Wood & Alexandra M. Newman, 2016. "Hierarchical Benders Decomposition for Open-Pit Mine Block Sequencing," Operations Research, INFORMS, vol. 64(4), pages 771-793, August.
    14. Akshay Chowdu & Peter Nesbitt & Andrea Brickey & Alexandra M. Newman, 2022. "Operations Research in Underground Mine Planning: A Review," Interfaces, INFORMS, vol. 52(2), pages 109-132, March.
    15. Barry King & Alexandra Newman, 2018. "Optimizing the Cutoff Grade for an Operational Underground Mine," Interfaces, INFORMS, vol. 48(4), pages 357-371, August.
    16. Zhang, Jian & Nault, Barrie R. & Dimitrakopoulos, Roussos G., 2019. "Optimizing a mineral value chain with market uncertainty using benders decomposition," European Journal of Operational Research, Elsevier, vol. 274(1), pages 227-239.
    17. Nelis, Gonzalo & Morales, Nelson & Jelvez, Enrique, 2023. "Optimal mining cut definition and short-term open pit production scheduling under geological uncertainty," Resources Policy, Elsevier, vol. 81(C).
    18. Alessandro Hill & Andrea J. Brickey & Italo Cipriano & Marcos Goycoolea & Alexandra Newman, 2022. "Optimization Strategies for Resource-Constrained Project Scheduling Problems in Underground Mining," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3042-3058, November.
    19. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    20. Xiaoyi Gu & Santanu S. Dey & Jean-Philippe P. Richard, 2024. "Solving Sparse Separable Bilinear Programs Using Lifted Bilinear Cover Inequalities," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 884-899, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:44:y:2014:i:2:p:176-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.