Forecasting East and West Coast Gasoline Prices with Tree-Based Machine Learning Algorithms
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yu, Lean & Ma, Yueming & Ma, Mengyao, 2021. "An effective rolling decomposition-ensemble model for gasoline consumption forecasting," Energy, Elsevier, vol. 222(C).
- Drachal, Krzysztof, 2021. "Forecasting selected energy commodities prices with Bayesian dynamic finite mixtures," Energy Economics, Elsevier, vol. 99(C).
- Cindy W. Ma, 1989. "Forecasting efficiency of energy futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 9(5), pages 393-419, October.
- Periklis Gogas & Theophilos Papadimitriou, 2021. "Machine Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 1-4, January.
- Li, Ranran, 2023. "Forecasting energy spot prices: A multiscale clustering recognition approach," Resources Policy, Elsevier, vol. 81(C).
- M. E. Malliaris & S. G. Malliaris, 2008. "Forecasting inter-related energy product prices," The European Journal of Finance, Taylor & Francis Journals, vol. 14(6), pages 453-468.
- Gogas, Periklis & Papadimitriou, Theophilos & Sofianos, Emmanouil, 2019. "Money Neutrality, Monetary Aggregates and Machine Learning," DUTH Research Papers in Economics 4-2016, Democritus University of Thrace, Department of Economics.
- Shian-Chang Huang & Cheng-Feng Wu, 2018. "Energy Commodity Price Forecasting with Deep Multiple Kernel Learning," Energies, MDPI, vol. 11(11), pages 1-16, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Raushan Kumar, 2021. "Predicting Wheat Futures Prices in India," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(1), pages 121-140, March.
- Dimitrios Mouchtaris & Emmanouil Sofianos & Periklis Gogas & Theophilos Papadimitriou, 2021. "Forecasting Natural Gas Spot Prices with Machine Learning," Energies, MDPI, vol. 14(18), pages 1-13, September.
- Adil EL Fakir & Richard Fairchild & Youssef Lamrani Alaoui & Dora Chan & Mohamed Tkiouat & Zaid Amer, 2024. "Kinship, gender and social links impact on micro group lending defaults," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2527-2542, April.
- Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2022. "Exploring the Trend of Commodity Prices: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
- Peter Dixon & Michael Jerie & Dean Mustakinov & Maureen T. Rimmer & Nicholas Sheard & Florian Schiffmann & Glyn Wittwer, 2024. "Constructing a Destructive Events Tool using Small Rectangular Areas, Computable General Equilibrium Modelling and Neural Networks," Centre of Policy Studies/IMPACT Centre Working Papers g-349, Victoria University, Centre of Policy Studies/IMPACT Centre.
- Kéa Baret & Amélie Barbier-Gauchard & Théophilos Papadimitriou, 2021.
"Forecasting the Stability and Growth Pact compliance using Machine Learning,"
Working Papers of BETA
2021-01, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Kea Baret & Amélie Barbier-Gauchard & Theophilos Papadimitriou, 2023. "Forecasting the Stability and Growth Pact compliance using Machine Learning," Post-Print hal-03121966, HAL.
- Kea Baret & Amelie Barbier-Gauchard & Theophilos Papadimitriou, 2022. "Forecasting the Stability and Growth Pact compliance using Machine Learning," Working Papers 2022.11, International Network for Economic Research - INFER.
- Qin Lu & Jingwen Liao & Kechi Chen & Yanhui Liang & Yu Lin, 2024. "Predicting Natural Gas Prices Based on a Novel Hybrid Model with Variational Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 639-678, February.
- Heyam H. Al-Baity, 2023. "The Artificial Intelligence Revolution in Digital Finance in Saudi Arabia: A Comprehensive Review and Proposed Framework," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
- Nwafor, Chioma Ngozi & Nwafor, Obumneme Zimuzor, 2023. "Determinants of non-performing loans: An explainable ensemble and deep neural network approach," Finance Research Letters, Elsevier, vol. 56(C).
- Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
- Ma, Yixiang & Yu, Lean & Zhang, Guoxing, 2022. "Short-term wind power forecasting with an intermittency-trait-driven methodology," Renewable Energy, Elsevier, vol. 198(C), pages 872-883.
- Hankyeung Choi & David J. Leatham & Kunlapath Sukcharoen, 2015. "Oil Price Forecasting Using Crack Spread Futures and Oil Exchange Traded Funds," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 9(1), March.
- Melike Bildirici & Nilgun Guler Bayazit & Yasemen Ucan, 2020. "Analyzing Crude Oil Prices under the Impact of COVID-19 by Using LSTARGARCHLSTM," Energies, MDPI, vol. 13(11), pages 1-18, June.
- Hyeong-Ohk Bae & Seunggu Kang & Muhyun Lee, 2024. "Option Pricing and Local Volatility Surface by Physics-Informed Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 64(5), pages 3143-3159, November.
- Moting Su & Zongyi Zhang & Ye Zhu & Donglan Zha, 2019. "Data-Driven Natural Gas Spot Price Forecasting with Least Squares Regression Boosting Algorithm," Energies, MDPI, vol. 12(6), pages 1-13, March.
- Lean Yu & Yueming Ma, 2021. "A Data-Trait-Driven Rolling Decomposition-Ensemble Model for Gasoline Consumption Forecasting," Energies, MDPI, vol. 14(15), pages 1-26, July.
- Krzysztof Drachal & Michał Pawłowski, 2021. "A Review of the Applications of Genetic Algorithms to Forecasting Prices of Commodities," Economies, MDPI, vol. 9(1), pages 1-22, January.
- Erokhin, Dmitry & Zagler, Martin, 2024. "Who will sign a double tax treaty next? A prediction based on economic determinants and machine learning algorithms," Economic Modelling, Elsevier, vol. 139(C).
- Chen, Haoyu & Huang, Hai & Zheng, Yong & Yang, Bing, 2024. "A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model," Applied Energy, Elsevier, vol. 375(C).
- Hanyao Gao & Gang Kou & Haiming Liang & Hengjie Zhang & Xiangrui Chao & Cong-Cong Li & Yucheng Dong, 2024. "Machine learning in business and finance: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-35, December.
More about this item
Keywords
gasoline; decision tree; random forest; XGBoost; machine learning; forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1296-:d:1353373. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.