IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v92y2024ics0301420724004070.html
   My bibliography  Save this article

How good are different machine and deep learning models in forecasting the future price of metals? Full sample versus sub-sample

Author

Listed:
  • Varshini, Anu
  • Kayal, Parthajit
  • Maiti, Moinak

Abstract

This study aims to forecast metal futures in commodity markets, including gold, silver, copper, platinum, palladium, and aluminium, using different machine and deep learning models. Prevalent models such as Stacked Long-Short Term Memory, Convolutional LSTM, Bidirectional LSTM, Support Vector Regressor, Extreme Gradient Boosting, and Gated Recurrent Unit are utilized. The model performance is assessed by multiple factors such as Root Mean Squared Error, Mean Absolute Error, and Mean Absolute Percentage Error. The study stands out by considering multiple metal commodity futures simultaneously, incorporating both Machine Learning and Deep Learning models, and conducting two sets of experiments with a full sample and subsample analysis. In addition, it uses different inputs of 30- and 60-days periods for robustness checks. Mean Absolute Percentage Error values suggest that different machine and deep learning models are efficient on prediction the future metal prices. However, the model performance varies significantly with the influence of metal choice, sample period, and inputs on prediction performance. Therefore, it suggests that constructing a theory based on machine and deep learning models is challenging.

Suggested Citation

  • Varshini, Anu & Kayal, Parthajit & Maiti, Moinak, 2024. "How good are different machine and deep learning models in forecasting the future price of metals? Full sample versus sub-sample," Resources Policy, Elsevier, vol. 92(C).
  • Handle: RePEc:eee:jrpoli:v:92:y:2024:i:c:s0301420724004070
    DOI: 10.1016/j.resourpol.2024.105040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420724004070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2024.105040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David S. Jacks & Kevin H. O'Rourke & Jeffrey G. Williamson, 2011. "Commodity Price Volatility and World Market Integration since 1700," The Review of Economics and Statistics, MIT Press, vol. 93(3), pages 800-813, August.
    2. Daniele Bianchi & Matthias Büchner & Tobias Hoogteijling & Andrea Tamoni, 2021. "Corrigendum: Bond Risk Premiums with Machine Learning [Bond risk premiums with machine learning]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1090-1103.
    3. Vijay Desai & Rakesh Bharati, 1998. "A comparison of linear regression and neural network methods for predicting excess returns on large stocks," Annals of Operations Research, Springer, vol. 78(0), pages 127-163, January.
    4. Sami Ben Jabeur & Salma Mefteh-Wali & Jean-Laurent Viviani, 2021. "Forecasting gold price with the XGBoost algorithm and SHAP interaction values," Post-Print hal-03331805, HAL.
    5. Parthajit Kayal & G. Balasubramanian, 2021. "Excess Volatility in Bitcoin: Extreme Value Volatility Estimation," IIM Kozhikode Society & Management Review, , vol. 10(2), pages 222-231, July.
    6. Luo, Hongyuan & Wang, Deyun & Cheng, Jinhua & Wu, Qiaosheng, 2022. "Multi-step-ahead copper price forecasting using a two-phase architecture based on an improved LSTM with novel input strategy and error correction," Resources Policy, Elsevier, vol. 79(C).
    7. Daniele Bianchi & Matthias Büchner & Andrea Tamoni, 2021. "Bond Risk Premiums with Machine Learning [Quadratic term structure models: Theory and evidence]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1046-1089.
    8. Vukovic, Darko & Vyklyuk, Yaroslav & Matsiuk, Natalia & Maiti, Moinak, 2020. "Neural network forecasting in prediction Sharpe ratio: Evidence from EU debt market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    9. Huseyin Cagan Kilinc & Adem Yurtsever, 2022. "Short-Term Streamflow Forecasting Using Hybrid Deep Learning Model Based on Grey Wolf Algorithm for Hydrological Time Series," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    10. Chang, Chiu-Lan & Fang, Ming, 2022. "The connectedness between natural resource commodities and stock market indices: Evidence from the Chinese economy," Resources Policy, Elsevier, vol. 78(C).
    11. Ibrahim A. ONOUR & Bruno S. SERGI, 2011. "Modeling and forecasting volatility in global food commodity prices," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 57(3), pages 132-139.
    12. Mahla Nikou & Gholamreza Mansourfar & Jamshid Bagherzadeh, 2019. "Stock price prediction using DEEP learning algorithm and its comparison with machine learning algorithms," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 26(4), pages 164-174, October.
    13. Sumit Ranjan & Parthajit Kayal & Malvika Saraf, 2023. "Bitcoin Price Prediction: A Machine Learning Sample Dimension Approach," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1617-1636, April.
    14. Carl R. Zulauf & Scott H. Irwin & Jason E. Ropp & Anthony J. Sberna, 1999. "A reappraisal of the forecasting performance of corn and soybean new crop futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(5), pages 603-618, August.
    15. Moinak Maiti & Darko Vukovic & Yaroslav Vyklyuk & Zoran Grubisic, 2022. "BRICS Capital Markets Co-Movement Analysis and Forecasting," Risks, MDPI, vol. 10(5), pages 1-13, April.
    16. Zhang, Hong & Nguyen, Hoang & Vu, Diep-Anh & Bui, Xuan-Nam & Pradhan, Biswajeet, 2021. "Forecasting monthly copper price: A comparative study of various machine learning-based methods," Resources Policy, Elsevier, vol. 73(C).
    17. Kepulaje Abhaya Kumar & Cristi Spulbar & Prakash Pinto & Iqbal Thonse Hawaldar & Ramona Birau & Jyeshtaraja Joisa, 2022. "Using Econometric Models to Manage the Price Risk of Cocoa Beans: A Case from India," Risks, MDPI, vol. 10(6), pages 1-18, June.
    18. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    19. Raza, Syed Ali & Masood, Amna & Benkraiem, Ramzi & Urom, Christian, 2023. "Forecasting the volatility of precious metals prices with global economic policy uncertainty in pre and during the COVID-19 period: Novel evidence from the GARCH-MIDAS approach," Energy Economics, Elsevier, vol. 120(C).
    20. Herrera, Gabriel Paes & Constantino, Michel & Tabak, Benjamin Miranda & Pistori, Hemerson & Su, Jen-Je & Naranpanawa, Athula, 2019. "Long-term forecast of energy commodities price using machine learning," Energy, Elsevier, vol. 179(C), pages 214-221.
    21. Janani Sri S. & Parthajit Kayal & G. Balasubramanian, 2022. "Can Equity be Safe-haven for Investment?," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 21(1), pages 32-63, March.
    22. Gong, Xu & Xu, Jun, 2022. "Geopolitical risk and dynamic connectedness between commodity markets," Energy Economics, Elsevier, vol. 110(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
    2. Gang Chu & John W. Goodell & Dehua Shen & Yongjie Zhang, 2022. "Machine learning to establish proxies for investor attention: evidence of improved stock-return prediction," Annals of Operations Research, Springer, vol. 318(1), pages 103-128, November.
    3. Nabavi, Zohre & Mirzehi, Mohammad & Dehghani, Hesam, 2024. "Reliable novel hybrid extreme gradient boosting for forecasting copper prices using meta-heuristic algorithms: A thirty-year analysis," Resources Policy, Elsevier, vol. 90(C).
    4. Fallahgoul, Hasan & Franstianto, Vincentius & Lin, Xin, 2024. "Asset pricing with neural networks: Significance tests," Journal of Econometrics, Elsevier, vol. 238(1).
    5. Faria, Gonçalo & Verona, Fabio, 2023. "Forecast combination in the frequency domain," Bank of Finland Research Discussion Papers 1/2023, Bank of Finland.
    6. Michalski, Lachlan & Low, Rand Kwong Yew, 2024. "Determinants of corporate credit ratings: Does ESG matter?," International Review of Financial Analysis, Elsevier, vol. 94(C).
    7. Li, Ning & Li, Jiaojiao & Wang, Qizhou & Yan, Dairong & Wang, Liguan & Jia, Mingtao, 2024. "A novel copper price forecasting ensemble method using adversarial interpretive structural model and sparrow search algorithm," Resources Policy, Elsevier, vol. 91(C).
    8. Peter Carr & Liuren Wu, 2023. "Decomposing Long Bond Returns: A Decentralized Theory," Review of Finance, European Finance Association, vol. 27(3), pages 997-1026.
    9. Eghbal Rahimikia & Stefan Zohren & Ser-Huang Poon, 2021. "Realised Volatility Forecasting: Machine Learning via Financial Word Embedding," Papers 2108.00480, arXiv.org, revised Mar 2023.
    10. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023. "The commodity risk premium and neural networks," Journal of Empirical Finance, Elsevier, vol. 74(C).
    11. Victor Duarte & Diogo Duarte & Dejanir H. Silva, 2024. "Machine Learning for Continuous-Time Finance," CESifo Working Paper Series 10909, CESifo.
    12. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    13. Corradi, Valentina & Fosten, Jack & Gutknecht, Daniel, 2024. "Predictive ability tests with possibly overlapping models," Journal of Econometrics, Elsevier, vol. 241(1).
    14. DeMiguel, Victor & Gil-Bazo, Javier & Nogales, Francisco J. & Santos, André A.P., 2023. "Machine learning and fund characteristics help to select mutual funds with positive alpha," Journal of Financial Economics, Elsevier, vol. 150(3).
    15. Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
    16. Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
    17. Luo, Qin & Bu, Jinfeng & Xu, Weiju & Huang, Dengshi, 2023. "Stock market volatility prediction: Evidence from a new bagging model," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 445-456.
    18. Goutte, Stéphane & Le, Hoang-Viet & Liu, Fei & von Mettenheim, Hans-Jörg, 2023. "Deep learning and technical analysis in cryptocurrency market," Finance Research Letters, Elsevier, vol. 54(C).
    19. Sergio Consoli & Luca Tiozzo Pezzoli & Elisa Tosetti, 2022. "Neural forecasting of the Italian sovereign bond market with economic news," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 197-224, December.
    20. Souropanis, Ioannis & Vivian, Andrew, 2023. "Forecasting realized volatility with wavelet decomposition," Journal of Empirical Finance, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:92:y:2024:i:c:s0301420724004070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.