How good are different machine and deep learning models in forecasting the future price of metals? Full sample versus sub-sample
Author
Abstract
Suggested Citation
DOI: 10.1016/j.resourpol.2024.105040
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Daniele Bianchi & Matthias Büchner & Tobias Hoogteijling & Andrea Tamoni, 2021. "Corrigendum: Bond Risk Premiums with Machine Learning [Bond risk premiums with machine learning]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1090-1103.
- Cao, Jian & Li, Zhi & Li, Jian, 2019. "Financial time series forecasting model based on CEEMDAN and LSTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 127-139.
- Daniele Bianchi & Matthias Büchner & Andrea Tamoni, 2021. "Bond Risk Premiums with Machine Learning [Quadratic term structure models: Theory and evidence]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1046-1089.
- Vukovic, Darko & Vyklyuk, Yaroslav & Matsiuk, Natalia & Maiti, Moinak, 2020. "Neural network forecasting in prediction Sharpe ratio: Evidence from EU debt market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
- Huseyin Cagan Kilinc & Adem Yurtsever, 2022. "Short-Term Streamflow Forecasting Using Hybrid Deep Learning Model Based on Grey Wolf Algorithm for Hydrological Time Series," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
- Chang, Chiu-Lan & Fang, Ming, 2022. "The connectedness between natural resource commodities and stock market indices: Evidence from the Chinese economy," Resources Policy, Elsevier, vol. 78(C).
- Ibrahim A. ONOUR & Bruno S. SERGI, 2011. "Modeling and forecasting volatility in global food commodity prices," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 57(3), pages 132-139.
- David S. Jacks & Kevin H. O'Rourke & Jeffrey G. Williamson, 2011.
"Commodity Price Volatility and World Market Integration since 1700,"
The Review of Economics and Statistics, MIT Press, vol. 93(3), pages 800-813, August.
- Williamson, Jeffrey G. & O'Rourke, Kevin & Jacks, David, 2009. "Commodity Price Volatility and World Market Integration since 1700," CEPR Discussion Papers 7190, C.E.P.R. Discussion Papers.
- David S. Jacks, Kevin H. O'Rourke and Jeffrey G. Williamson, 2009. "Commodity Price Volatility and World Market Integration since 1700," The Institute for International Integration Studies Discussion Paper Series iiisdp280, IIIS.
- David S. Jacks & Kevin H. O'Rourke & Jeffrey G. Williamson, 2009. "Commodity Price Volatility and World Market Integration since 1700," NBER Working Papers 14748, National Bureau of Economic Research, Inc.
- David S. Jacks, Kevin H. O'Rourke and Jeffrey G. Williamson, 2009. "Commodity Price Volatility and World Market Integration since 1700," The Institute for International Integration Studies Discussion Paper Series iiisdp284, IIIS.
- Mahla Nikou & Gholamreza Mansourfar & Jamshid Bagherzadeh, 2019. "Stock price prediction using DEEP learning algorithm and its comparison with machine learning algorithms," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 26(4), pages 164-174, October.
- Carl R. Zulauf & Scott H. Irwin & Jason E. Ropp & Anthony J. Sberna, 1999. "A reappraisal of the forecasting performance of corn and soybean new crop futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(5), pages 603-618, August.
- Moinak Maiti & Darko Vukovic & Yaroslav Vyklyuk & Zoran Grubisic, 2022. "BRICS Capital Markets Co-Movement Analysis and Forecasting," Risks, MDPI, vol. 10(5), pages 1-13, April.
- Zhang, Hong & Nguyen, Hoang & Vu, Diep-Anh & Bui, Xuan-Nam & Pradhan, Biswajeet, 2021. "Forecasting monthly copper price: A comparative study of various machine learning-based methods," Resources Policy, Elsevier, vol. 73(C).
- Kepulaje Abhaya Kumar & Cristi Spulbar & Prakash Pinto & Iqbal Thonse Hawaldar & Ramona Birau & Jyeshtaraja Joisa, 2022. "Using Econometric Models to Manage the Price Risk of Cocoa Beans: A Case from India," Risks, MDPI, vol. 10(6), pages 1-18, June.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Fama, Eugene F., 1984. "Forward and spot exchange rates," Journal of Monetary Economics, Elsevier, vol. 14(3), pages 319-338, November.
- Vijay Desai & Rakesh Bharati, 1998. "A comparison of linear regression and neural network methods for predicting excess returns on large stocks," Annals of Operations Research, Springer, vol. 78(0), pages 127-163, January.
- Sami Ben Jabeur & Salma Mefteh-Wali & Jean-Laurent Viviani, 2021. "Forecasting gold price with the XGBoost algorithm and SHAP interaction values," Post-Print hal-03331805, HAL.
- Parthajit Kayal & G. Balasubramanian, 2021. "Excess Volatility in Bitcoin: Extreme Value Volatility Estimation," IIM Kozhikode Society & Management Review, , vol. 10(2), pages 222-231, July.
- Luo, Hongyuan & Wang, Deyun & Cheng, Jinhua & Wu, Qiaosheng, 2022. "Multi-step-ahead copper price forecasting using a two-phase architecture based on an improved LSTM with novel input strategy and error correction," Resources Policy, Elsevier, vol. 79(C).
- Sumit Ranjan & Parthajit Kayal & Malvika Saraf, 2023. "Bitcoin Price Prediction: A Machine Learning Sample Dimension Approach," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1617-1636, April.
- Raza, Syed Ali & Masood, Amna & Benkraiem, Ramzi & Urom, Christian, 2023.
"Forecasting the volatility of precious metals prices with global economic policy uncertainty in pre and during the COVID-19 period: Novel evidence from the GARCH-MIDAS approach,"
Energy Economics, Elsevier, vol. 120(C).
- Syed Ali Raza & Amna Masood & Ramzi Benkraiem & Christian Urom, 2023. "Forecasting the volatility of precious metals prices with global economic policy uncertainty in pre and during the COVID-19 period: Novel evidence from the GARCH-MIDAS approach," Post-Print hal-04080872, HAL.
- Herrera, Gabriel Paes & Constantino, Michel & Tabak, Benjamin Miranda & Pistori, Hemerson & Su, Jen-Je & Naranpanawa, Athula, 2019. "Long-term forecast of energy commodities price using machine learning," Energy, Elsevier, vol. 179(C), pages 214-221.
- Janani Sri S. & Parthajit Kayal & G. Balasubramanian, 2022. "Can Equity be Safe-haven for Investment?," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 21(1), pages 32-63, March.
- Gong, Xu & Xu, Jun, 2022. "Geopolitical risk and dynamic connectedness between commodity markets," Energy Economics, Elsevier, vol. 110(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Adel Javanmard & Jingwei Ji & Renyuan Xu, 2024. "Multi-Task Dynamic Pricing in Credit Market with Contextual Information," Papers 2410.14839, arXiv.org, revised Oct 2024.
- Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
- Gang Chu & John W. Goodell & Dehua Shen & Yongjie Zhang, 2022. "Machine learning to establish proxies for investor attention: evidence of improved stock-return prediction," Annals of Operations Research, Springer, vol. 318(1), pages 103-128, November.
- Nabavi, Zohre & Mirzehi, Mohammad & Dehghani, Hesam, 2024. "Reliable novel hybrid extreme gradient boosting for forecasting copper prices using meta-heuristic algorithms: A thirty-year analysis," Resources Policy, Elsevier, vol. 90(C).
- Fallahgoul, Hasan & Franstianto, Vincentius & Lin, Xin, 2024. "Asset pricing with neural networks: Significance tests," Journal of Econometrics, Elsevier, vol. 238(1).
- Faria, Gonçalo & Verona, Fabio, 2023. "Forecast combination in the frequency domain," Bank of Finland Research Discussion Papers 1/2023, Bank of Finland.
- John H. Cochrane, 1999.
"New facts in finance,"
Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
- John H. Cochrane, 1999. "New Facts in Finance," CRSP working papers 490, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
- John H. Cochrane, 1999. "New Facts in Finance," NBER Working Papers 7169, National Bureau of Economic Research, Inc.
- Li, Ning & Li, Jiaojiao & Wang, Qizhou & Yan, Dairong & Wang, Liguan & Jia, Mingtao, 2024. "A novel copper price forecasting ensemble method using adversarial interpretive structural model and sparrow search algorithm," Resources Policy, Elsevier, vol. 91(C).
- Dimitri Vayanos & Paul Woolley, 2023.
"Asset Management as Creator of Market Inefficiency,"
Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 51(1), pages 1-11, March.
- Vayanos, Dimitri & Woolley, Paul, 2023. "Asset management as creator of market inefficiency," LSE Research Online Documents on Economics 118540, London School of Economics and Political Science, LSE Library.
- Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023.
"The commodity risk premium and neural networks,"
Journal of Empirical Finance, Elsevier, vol. 74(C).
- Joelle Miffre & Hossein Rad & Rand Kwong Yew Low & Robert Faff, 2023. "The commodity risk premium and neural networks," Post-Print hal-04322519, HAL.
- Corradi, Valentina & Fosten, Jack & Gutknecht, Daniel, 2024. "Predictive ability tests with possibly overlapping models," Journal of Econometrics, Elsevier, vol. 241(1).
- Khan, Nasir & Mejri, Sami & Hammoudeh, Shawkat, 2024. "How do global commodities react to increasing geopolitical risks? New insights into the Russia-Ukraine and Palestine-Israel conflicts," Energy Economics, Elsevier, vol. 138(C).
- S. M. Ahmed & M. I. Ansari, 1997. "Modelling the efficiency of the Canadian foreign exchange market: a bivariate transfer function analysis," Applied Economics, Taylor & Francis Journals, vol. 29(1), pages 63-70.
- Accominotti, Olivier & Chambers, David, 2016.
"If You're So Smart: John Maynard Keynes and Currency Speculation in the Interwar Years,"
The Journal of Economic History, Cambridge University Press, vol. 76(2), pages 342-386, June.
- Accominotti, Olivier & Chambers, David, 2016. "If you’re so smart: John Maynard Keynes and currency speculation in the interwar years," LSE Research Online Documents on Economics 64722, London School of Economics and Political Science, LSE Library.
- Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
- Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
- Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Luo, Qin & Bu, Jinfeng & Xu, Weiju & Huang, Dengshi, 2023. "Stock market volatility prediction: Evidence from a new bagging model," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 445-456.
- Qin Lu & Jingwen Liao & Kechi Chen & Yanhui Liang & Yu Lin, 2024. "Predicting Natural Gas Prices Based on a Novel Hybrid Model with Variational Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 639-678, February.
- Ruoyang Li & Alva Svoboda & Shmuel Oren, 2015. "Efficiency impact of convergence bidding in the california electricity market," Journal of Regulatory Economics, Springer, vol. 48(3), pages 245-284, December.
More about this item
Keywords
Machine learning; Deep learning; Forecasting; Commodity; Futures;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:92:y:2024:i:c:s0301420724004070. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.