IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v79y2022ics0301420722003701.html
   My bibliography  Save this article

Spillover effects between commodity and stock markets: A SDSES approach

Author

Listed:
  • Garcia-Jorcano, Laura
  • Sanchis-Marco, Lidia

Abstract

In this paper, we use a state-dependent sensitivity expected shortfall (SDSES) approach using expectiles. This model enables us to quantify the direction, size, and persistence of risk spillovers among the US and emerging market stock indices and different individual commodities as a function of the state of financial markets (tranquil, normal, and volatile). We obtain high and more significant spillovers and financialization process evidence in the volatile state of the post-Draghi speech and COVID-19 period, especially for the copper and wheat market. Market stock indices and commodity US market index appear to play a major role in the transmission of shocks to other markets, mainly to the wheat market.

Suggested Citation

  • Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2022. "Spillover effects between commodity and stock markets: A SDSES approach," Resources Policy, Elsevier, vol. 79(C).
  • Handle: RePEc:eee:jrpoli:v:79:y:2022:i:c:s0301420722003701
    DOI: 10.1016/j.resourpol.2022.102926
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420722003701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2022.102926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dahl, Roy Endré & Oglend, Atle & Yahya, Muhammad, 2020. "Dynamics of volatility spillover in commodity markets: Linking crude oil to agriculture," Journal of Commodity Markets, Elsevier, vol. 20(C).
    2. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    3. Amemiya, Takeshi, 1982. "Two Stage Least Absolute Deviations Estimators," Econometrica, Econometric Society, vol. 50(3), pages 689-711, May.
    4. Xiao Jing Cai & Zheng Fang & Youngho Chang & Shuairu Tian & Shigeyuki Hamori, 2020. "Co-movements in commodity markets and implications in diversification benefits," Empirical Economics, Springer, vol. 58(2), pages 393-425, February.
    5. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    6. Kuan, Chung-Ming & Yeh, Jin-Huei & Hsu, Yu-Chin, 2009. "Assessing value at risk with CARE, the Conditional Autoregressive Expectile models," Journal of Econometrics, Elsevier, vol. 150(2), pages 261-270, June.
    7. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    8. Baur, Dirk G. & Dimpfl, Thomas & Jung, Robert C., 2012. "Stock return autocorrelations revisited: A quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 254-265.
    9. Bonato, Matteo, 2019. "Realized correlations, betas and volatility spillover in the agricultural commodity market: What has changed?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 184-202.
    10. Nicola, Francesca de & De Pace, Pierangelo & Hernandez, Manuel A., 2016. "Co-movement of major energy, agricultural, and food commodity price returns: A time-series assessment," Energy Economics, Elsevier, vol. 57(C), pages 28-41.
    11. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    12. Suleyman Basak & Anna Pavlova, 2016. "A Model of Financialization of Commodities," Journal of Finance, American Finance Association, vol. 71(4), pages 1511-1556, August.
    13. Gebka, Bartosz & Wohar, Mark E., 2013. "Causality between trading volume and returns: Evidence from quantile regressions," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 144-159.
    14. Marshall, Ben R. & Nguyen, Nhut H. & Visaltanachoti, Nuttawat, 2013. "Liquidity commonality in commodities," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 11-20.
    15. De Rossi, Giuliano & Harvey, Andrew, 2009. "Quantiles, expectiles and splines," Journal of Econometrics, Elsevier, vol. 152(2), pages 179-185, October.
    16. Shahzad, Syed Jawad Hussain & Hernandez, Jose Arreola & Al-Yahyaee, Khamis Hamed & Jammazi, Rania, 2018. "Asymmetric risk spillovers between oil and agricultural commodities," Energy Policy, Elsevier, vol. 118(C), pages 182-198.
    17. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2013. "Conditional correlations and volatility spillovers between crude oil and stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 116-138.
    18. Baur, Dirk G., 2013. "The structure and degree of dependence: A quantile regression approach," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 786-798.
    19. Fan, Ying & Zhang, Yue-Jun & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Estimating 'Value at Risk' of crude oil price and its spillover effect using the GED-GARCH approach," Energy Economics, Elsevier, vol. 30(6), pages 3156-3171, November.
    20. Tsai, I-Chun, 2012. "The relationship between stock price index and exchange rate in Asian markets: A quantile regression approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(3), pages 609-621.
    21. Farid, Saqib & Naeem, Muhammad Abubakr & Paltrinieri, Andrea & Nepal, Rabindra, 2022. "Impact of COVID-19 on the quantile connectedness between energy, metals and agriculture commodities," Energy Economics, Elsevier, vol. 109(C).
    22. Wen, Fenghua & Cao, Jiahui & Liu, Zhen & Wang, Xiong, 2021. "Dynamic volatility spillovers and investment strategies between the Chinese stock market and commodity markets," International Review of Financial Analysis, Elsevier, vol. 76(C).
    23. Gema Fernández-Avilés & José-María Montero & Lidia Sanchis-Marco, 2020. "Extreme downside risk co-movement in commodity markets during distress periods: a multidimensional scaling approach," The European Journal of Finance, Taylor & Francis Journals, vol. 26(12), pages 1207-1237, August.
    24. Ji, Qiang & Bouri, Elie & Roubaud, David & Shahzad, Syed Jawad Hussain, 2018. "Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model," Energy Economics, Elsevier, vol. 75(C), pages 14-27.
    25. Powell, James L, 1983. "The Asymptotic Normality of Two-Stage Least Absolute Deviations Estimators," Econometrica, Econometric Society, vol. 51(5), pages 1569-1575, September.
    26. Ciner, Cetin & Gurdgiev, Constantin & Lucey, Brian M., 2013. "Hedges and safe havens: An examination of stocks, bonds, gold, oil and exchange rates," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 202-211.
    27. Alexey Yurievich Mikhaylov, 2018. "Pricing in Oil Market and Using Probit Model for Analysis of Stock Market Effects," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 69-73.
    28. Mensi, Walid & Beljid, Makram & Boubaker, Adel & Managi, Shunsuke, 2013. "Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold," Economic Modelling, Elsevier, vol. 32(C), pages 15-22.
    29. Rubia, Antonio & Sanchis-Marco, Lidia, 2013. "On downside risk predictability through liquidity and trading activity: A dynamic quantile approach," International Journal of Forecasting, Elsevier, vol. 29(1), pages 202-219.
    30. Brian J. Henderson & Neil D. Pearson & Li Wang, 2015. "Editor's Choice New Evidence on the Financialization of Commodity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 28(5), pages 1285-1311.
    31. Marimoutou, Velayoudoum & Raggad, Bechir & Trabelsi, Abdelwahed, 2009. "Extreme Value Theory and Value at Risk: Application to oil market," Energy Economics, Elsevier, vol. 31(4), pages 519-530, July.
    32. Baldi, Lucia & Peri, Massimo & Vandone, Daniela, 2016. "Stock markets’ bubbles burst and volatility spillovers in agricultural commodity markets," Research in International Business and Finance, Elsevier, vol. 38(C), pages 277-285.
    33. Vivian, Andrew & Wohar, Mark E., 2012. "Commodity volatility breaks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(2), pages 395-422.
    34. Awartani, Basel & Aktham, Maghyereh & Cherif, Guermat, 2016. "The connectedness between crude oil and financial markets: Evidence from implied volatility indices," Journal of Commodity Markets, Elsevier, vol. 4(1), pages 56-69.
    35. Ma, Yan-Ran & Ji, Qiang & Wu, Fei & Pan, Jiaofeng, 2021. "Financialization, idiosyncratic information and commodity co-movements," Energy Economics, Elsevier, vol. 94(C).
    36. Tae-Hwan Kim & Christophe Muller, 2004. "Two-stage quantile regression when the first stage is based on quantile regression," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 218-231, June.
    37. Nazlioglu, Saban & Erdem, Cumhur & Soytas, Ugur, 2013. "Volatility spillover between oil and agricultural commodity markets," Energy Economics, Elsevier, vol. 36(C), pages 658-665.
    38. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    39. Cao, Yan & Cheng, Sheng, 2021. "Impact of COVID-19 outbreak on multi-scale asymmetric spillovers between food and oil prices," Resources Policy, Elsevier, vol. 74(C).
    40. Mensi, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Yoon, Seong-Min, 2014. "Dynamic spillovers among major energy and cereal commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 225-243.
    41. Algieri, Bernardina & Leccadito, Arturo, 2017. "Wave after Wave: Contagion Risk from Commodity Markets," Discussion Papers 257801, University of Bonn, Center for Development Research (ZEF).
    42. López-Espinosa, Germán & Moreno, Antonio & Rubia, Antonio & Valderrama, Laura, 2012. "Short-term wholesale funding and systemic risk: A global CoVaR approach," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3150-3162.
    43. Tereza Palanska, 2020. "Measurement of Volatility Spillovers and Asymmetric Connectedness on Commodity and Equity Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 70(1), pages 42-69, February.
    44. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    45. Thanaset Chevapatrakul & Juan Paez-farrell, 2013. "What determines the sacrifice ratio? A quantile regression approach," Economics Bulletin, AccessEcon, vol. 33(3), pages 1863-1874.
    46. Aigner, D J & Amemiya, Takeshi & Poirier, Dale J, 1976. "On the Estimation of Production Frontiers: Maximum Likelihood Estimation of the Parameters of a Discontinuous Density Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(2), pages 377-396, June.
    47. Vinod, Hrishikesh D. & Lopez-de-Lacalle, Javier, 2009. "Maximum Entropy Bootstrap for Time Series: The meboot R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i05).
    48. Adams, Zeno & Füss, Roland & Gropp, Reint, 2014. "Spillover Effects among Financial Institutions: A State-Dependent Sensitivity Value-at-Risk Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 575-598, June.
    49. Zhang, Dayong & Broadstock, David C., 2020. "Global financial crisis and rising connectedness in the international commodity markets," International Review of Financial Analysis, Elsevier, vol. 68(C).
    50. Kumar, Satish & Tiwari, Aviral Kumar & Raheem, Ibrahim Dolapo & Hille, Erik, 2021. "Time-varying dependence structure between oil and agricultural commodity markets: A dependence-switching CoVaR copula approach," Resources Policy, Elsevier, vol. 72(C).
    51. Wen, Danyan & Wang, Gang-Jin & Ma, Chaoqun & Wang, Yudong, 2019. "Risk spillovers between oil and stock markets: A VAR for VaR analysis," Energy Economics, Elsevier, vol. 80(C), pages 524-535.
    52. Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
    53. Xinyu Yuan & Jiechen Tang & Wing-Keung Wong & Songsak Sriboonchitta, 2020. "Modeling Co-Movement among Different Agricultural Commodity Markets: A Copula-GARCH Approach," Sustainability, MDPI, vol. 12(1), pages 1-17, January.
    54. Adams, Zeno & Glueck, Thorsten, 2014. "Financialization in Commodity Markets: A Passing Trend or the New Normal?," Working Papers on Finance 1413, University of St. Gallen, School of Finance, revised Aug 2015.
    55. Nazlioglu, Saban, 2011. "World oil and agricultural commodity prices: Evidence from nonlinear causality," Energy Policy, Elsevier, vol. 39(5), pages 2935-2943, May.
    56. Adams, Zeno & Glück, Thorsten, 2015. "Financialization in commodity markets: A passing trend or the new normal?," Journal of Banking & Finance, Elsevier, vol. 60(C), pages 93-111.
    57. Sobotka, Fabian & Kneib, Thomas, 2012. "Geoadditive expectile regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 755-767.
    58. Maghyereh, Aktham I. & Awartani, Basel & Bouri, Elie, 2016. "The directional volatility connectedness between crude oil and equity markets: New evidence from implied volatility indexes," Energy Economics, Elsevier, vol. 57(C), pages 78-93.
    59. Susanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What is the best risk measure in practice? A comparison of standard measures," Papers 1312.1645, arXiv.org, revised Apr 2015.
    60. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    61. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    62. Yao, Qiwei & Tong, Howell, 1996. "Asymmetric least squares regression estimation: a nonparametric approach," LSE Research Online Documents on Economics 19423, London School of Economics and Political Science, LSE Library.
    63. Du, Limin & He, Yanan, 2015. "Extreme risk spillovers between crude oil and stock markets," Energy Economics, Elsevier, vol. 51(C), pages 455-465.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Suhui, 2023. "Tail dependence, dynamic linkages, and extreme spillover between the stock and China's commodity markets," Journal of Commodity Markets, Elsevier, vol. 29(C).
    2. Mensi, Walid & Ahmadian-Yazdi, Farzaneh & Al-Kharusi, Sami & Roudari, Soheil & Kang, Sang Hoon, 2024. "Extreme Connectedness Across Chinese Stock and Commodity Futures Markets," Research in International Business and Finance, Elsevier, vol. 70(PA).
    3. Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2023. "Quantile spillovers and connectedness analysis between oil and African stock markets," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 60-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Rubia Serrano & Lidia Sanchis-Marco, 2015. "Measuring Tail-Risk Cross-Country Exposures in the Banking Industry," Working Papers. Serie AD 2015-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    2. Laura Garcia-Jorcano & Lidia Sanchis-Marco, 2023. "Measuring Systemic Risk Using Multivariate Quantile-Located ES Models," Journal of Financial Econometrics, Oxford University Press, vol. 21(1), pages 1-72.
    3. Zhou, Xiaoran & Enilov, Martin & Parhi, Mamata, 2024. "Does oil spin the commodity wheel? Quantile connectedness with a common factor error structure across energy and agricultural markets," Energy Economics, Elsevier, vol. 132(C).
    4. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Adewuyi, Adeolu O. & Lee, Chien-Chiang, 2022. "Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Energy Economics, Elsevier, vol. 113(C).
    5. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    6. Shen, Yifan & Shi, Xunpeng & Variam, Hari Malamakkavu Padinjare, 2018. "Risk transmission mechanism between energy markets: A VAR for VaR approach," Energy Economics, Elsevier, vol. 75(C), pages 377-388.
    7. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
    8. Cui, Jinxin & Maghyereh, Aktham & Goh, Mark & Zou, Huiwen, 2022. "Risk spillovers and time-varying links between international oil and China’s commodity futures markets: Fresh evidence from the higher-order moments," Energy, Elsevier, vol. 238(PB).
    9. Maitra, Debasish & Guhathakurta, Kousik & Kang, Sang Hoon, 2021. "The good, the bad and the ugly relation between oil and commodities: An analysis of asymmetric volatility connectedness and portfolio implications," Energy Economics, Elsevier, vol. 94(C).
    10. Guhathakurta, Kousik & Dash, Saumya Ranjan & Maitra, Debasish, 2020. "Period specific volatility spillover based connectedness between oil and other commodity prices and their portfolio implications," Energy Economics, Elsevier, vol. 85(C).
    11. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    12. Dahl, Roy Endré & Oglend, Atle & Yahya, Muhammad, 2020. "Dynamics of volatility spillover in commodity markets: Linking crude oil to agriculture," Journal of Commodity Markets, Elsevier, vol. 20(C).
    13. Mishra, Aswini Kumar & Arunachalam, Vairam & Olson, Dennis & Patnaik, Debasis, 2023. "Dynamic connectedness in commodity futures markets during Covid-19 in India: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 82(C).
    14. Naeem, Muhammad Abubakr & Karim, Sitara & Hasan, Mudassar & Lucey, Brian M. & Kang, Sang Hoon, 2022. "Nexus between oil shocks and agriculture commodities: Evidence from time and frequency domain," Energy Economics, Elsevier, vol. 112(C).
    15. Xu Zhang & Xian Yang & Jianping Li & Jun Hao, 2023. "Contemporaneous and noncontemporaneous idiosyncratic risk spillovers in commodity futures markets: A novel network topology approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(6), pages 705-733, June.
    16. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    17. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    18. Morelli, Giacomo, 2023. "Stochastic ordering of systemic risk in commodity markets," Energy Economics, Elsevier, vol. 117(C).
    19. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2021. "Systemic-systematic risk in financial system: A dynamic ranking based on expectiles," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 330-365.
    20. Śmiech, Sławomir & Papież, Monika & Fijorek, Kamil & Dąbrowski, Marek A., 2019. "What drives food price volatility? Evidence based on a generalized VAR approach applied to the food, financial and energy markets," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 13, pages 1-32.

    More about this item

    Keywords

    Commodities; Risk spillovers; Financialization; Expected shortfall; CARE models;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:79:y:2022:i:c:s0301420722003701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.