IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v29y2013i1p202-219.html
   My bibliography  Save this article

On downside risk predictability through liquidity and trading activity: A dynamic quantile approach

Author

Listed:
  • Rubia, Antonio
  • Sanchis-Marco, Lidia

Abstract

Most downside risk models implicitly assume that returns are a sufficient statistic with which to forecast the daily conditional distribution of a portfolio. In this paper, we analyze whether the variables that proxy for market-wide liquidity and trading conditions convey valid information for forecasting the quantiles of the conditional distribution of several representative market portfolios, including volume- and value-weighted market portfolios, and several Book-to-Market- and Size-sorted portfolios. Using dynamic quantile regression techniques, we report evidence of conditional tail predictability in terms of these variables. A comprehensive backtesting analysis shows that this link can be exploited in dynamic quantile modelling, in order to considerably improve the performances of day-ahead Value at Risk forecasts.

Suggested Citation

  • Rubia, Antonio & Sanchis-Marco, Lidia, 2013. "On downside risk predictability through liquidity and trading activity: A dynamic quantile approach," International Journal of Forecasting, Elsevier, vol. 29(1), pages 202-219.
  • Handle: RePEc:eee:intfor:v:29:y:2013:i:1:p:202-219
    DOI: 10.1016/j.ijforecast.2012.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016920701200115X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2012.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    2. James W. Taylor, 2008. "Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 382-406, Summer.
    3. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
    4. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    5. Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.
    6. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    7. George Kouretas & Leonidas Zarangas, 2005. "Conditional autoregressive valu at risk by regression quantile: Estimatingmarket risk for major stock markets," Working Papers 0521, University of Crete, Department of Economics.
    8. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    9. Tarun Chordia & Richard Roll & Avanidhar Subrahmanyam, 2001. "Market Liquidity and Trading Activity," Journal of Finance, American Finance Association, vol. 56(2), pages 501-530, April.
    10. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 53-89.
    11. Rapach, David E. & Strauss, Jack K., 2009. "Differences in housing price forecastability across US states," International Journal of Forecasting, Elsevier, vol. 25(2), pages 351-372.
    12. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    13. De Rossi, Giuliano & Harvey, Andrew, 2009. "Quantiles, expectiles and splines," Journal of Econometrics, Elsevier, vol. 152(2), pages 179-185, October.
    14. Hallin, Marc & Mathias, Charles & Pirotte, Hugues & Veredas, David, 2011. "Market liquidity as dynamic factors," Journal of Econometrics, Elsevier, vol. 163(1), pages 42-50, July.
    15. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    16. French, Kenneth R. & Roll, Richard, 1986. "Stock return variances : The arrival of information and the reaction of traders," Journal of Financial Economics, Elsevier, vol. 17(1), pages 5-26, September.
    17. repec:ulb:ulbeco:2013/136188 is not listed on IDEAS
    18. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2000. "Commonality in liquidity," Journal of Financial Economics, Elsevier, vol. 56(1), pages 3-28, April.
    19. Bollerslev, Tim & Melvin, Michael, 1994. "Bid--ask spreads and volatility in the foreign exchange market : An empirical analysis," Journal of International Economics, Elsevier, vol. 36(3-4), pages 355-372, May.
    20. Xiao, Zhijie & Koenker, Roger, 2009. "Conditional Quantile Estimation for Generalized Autoregressive Conditional Heteroscedasticity Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1696-1712.
    21. Ergün, A. Tolga & Jun, Jongbyung, 2010. "Time-varying higher-order conditional moments and forecasting intraday VaR and Expected Shortfall," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 264-272, August.
    22. Len Umantsev & Victor Chernozhukov, 2001. "Conditional value-at-risk: Aspects of modeling and estimation," Empirical Economics, Springer, vol. 26(1), pages 271-292.
    23. repec:bla:jfinan:v:44:y:1989:i:1:p:115-34 is not listed on IDEAS
    24. López-Espinosa, Germán & Moreno, Antonio & Rubia, Antonio & Valderrama, Laura, 2012. "Short-term wholesale funding and systemic risk: A global CoVaR approach," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3150-3162.
    25. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    26. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    27. Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(5), pages 793-813, December.
    28. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    29. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    30. Victor Chernozhukov, 2005. "Extremal quantile regression," Papers math/0505639, arXiv.org.
    31. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    32. Alexander, Carol & Sheedy, Elizabeth, 2008. "Developing a stress testing framework based on market risk models," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2220-2236, October.
    33. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    34. International Monetary Fund, 2012. "Short-Term Wholesale Funding and Systemic Risk: A Global Covar Approach," IMF Working Papers 2012/046, International Monetary Fund.
    35. Suominen, Matti, 2001. "Trading Volume and Information Revelation in Stock Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 36(4), pages 545-565, December.
    36. Hasbrouck, Joel & Seppi, Duane J., 2001. "Common factors in prices, order flows, and liquidity," Journal of Financial Economics, Elsevier, vol. 59(3), pages 383-411, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lidia Sanchis-Marco & Antonio Rubia Serrano, 2011. "On downside risk predictability through liquidity and trading activity: a quantile regression approach," Working Papers. Serie AD 2011-14, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    2. Derek Bunn, Arne Andresen, Dipeng Chen, Sjur Westgaard, 2016. "Analysis and Forecasting of Electricty Price Risks with Quantile Factor Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    3. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    4. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    5. Antonio Rubia Serrano & Lidia Sanchis-Marco, 2015. "Measuring Tail-Risk Cross-Country Exposures in the Banking Industry," Working Papers. Serie AD 2015-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    6. Xiaochun Liu, 2016. "Markov switching quantile autoregression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 356-395, November.
    7. Vincenzo Candila & Giampiero M. Gallo & Lea Petrella, 2020. "Mixed--frequency quantile regressions to forecast Value--at--Risk and Expected Shortfall," Papers 2011.00552, arXiv.org, revised Mar 2023.
    8. Schaumburg, Julia, 2012. "Predicting extreme value at risk: Nonparametric quantile regression with refinements from extreme value theory," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4081-4096.
    9. Haugom, Erik & Ray, Rina, 2017. "Heterogeneous traders, liquidity, and volatility in crude oil futures market," Journal of Commodity Markets, Elsevier, vol. 5(C), pages 36-49.
    10. Laura Garcia-Jorcano & Lidia Sanchis-Marco, 2023. "Measuring Systemic Risk Using Multivariate Quantile-Located ES Models," Journal of Financial Econometrics, Oxford University Press, vol. 21(1), pages 1-72.
    11. Reber, Beat, 2017. "Does mispricing, liquidity or third-party certification contribute to IPO downside risk?," International Review of Financial Analysis, Elsevier, vol. 51(C), pages 25-53.
    12. Benjamin Hamidi & Emmanuel Jurczenko & Bertrand Maillet, 2009. "D'un multiple conditionnel en assurance de portefeuille : CAViaR pour les gestionnaires ?," Post-Print halshs-00389773, HAL.
    13. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    14. Chan Jennifer So Kuen & Ng Kok-Haur & Nitithumbundit Thanakorn & Peiris Shelton, 2019. "Efficient estimation of financial risk by regressing the quantiles of parametric distributions: An application to CARR models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(2), pages 1-22, April.
    15. Wilson Calmon & Eduardo Ferioli & Davi Lettieri & Johann Soares & Adrian Pizzinga, 2021. "An Extensive Comparison of Some Well‐Established Value at Risk Methods," International Statistical Review, International Statistical Institute, vol. 89(1), pages 148-166, April.
    16. Ewa Ratuszny, 2015. "Risk Modeling of Commodities using CAViaR Models, the Encompassing Method and the Combined Forecasts," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 15, pages 129-156.
    17. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    18. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    19. Geenens, Gery & Dunn, Richard, 2022. "A nonparametric copula approach to conditional Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 21(C), pages 19-37.
    20. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:29:y:2013:i:1:p:202-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.