IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v72y2021ics0301420721000660.html
   My bibliography  Save this article

Time-varying dependence structure between oil and agricultural commodity markets: A dependence-switching CoVaR copula approach

Author

Listed:
  • Kumar, Satish
  • Tiwari, Aviral Kumar
  • Raheem, Ibrahim Dolapo
  • Hille, Erik

Abstract

We examine the energy-food nexus using the dependence-switching copula model. Specifically, we look at the dependence for four distinct market states, such as, increasing oil–increasing commodity, declining oil–declining commodity, increasing oil–declining commodity, as well as declining oil–increasing commodity markets. Our results support the argument that the crash of oil markets and agricultural commodities happen at the same time, especially during crisis period. However, the same is not true during times of normal economic conditions, implying that investors cannot make excess profits in both agricultural and oil markets at once. Furthermore, our analysis suggests that the return chasing effect dominates for all commodities on maximum occasions. The CoVaR and ΔCoVaR results indicate important risk spillover from oil to agricultural markets, especially around the financial crisis.

Suggested Citation

  • Kumar, Satish & Tiwari, Aviral Kumar & Raheem, Ibrahim Dolapo & Hille, Erik, 2021. "Time-varying dependence structure between oil and agricultural commodity markets: A dependence-switching CoVaR copula approach," Resources Policy, Elsevier, vol. 72(C).
  • Handle: RePEc:eee:jrpoli:v:72:y:2021:i:c:s0301420721000660
    DOI: 10.1016/j.resourpol.2021.102049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420721000660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2021.102049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Albulescu, Claudiu Tiberiu & Tiwari, Aviral Kumar & Ji, Qiang, 2020. "Copula-based local dependence among energy, agriculture and metal commodities markets," Energy, Elsevier, vol. 202(C).
    2. Jiang, Yonghong & Lao, Jiashun & Mo, Bin & Nie, He, 2018. "Dynamic linkages among global oil market, agricultural raw material markets and metal markets: An application of wavelet and copula approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 265-279.
    3. Jebabli, Ikram & Arouri, Mohamed & Teulon, Frédéric, 2014. "On the effects of world stock market and oil price shocks on food prices: An empirical investigation based on TVP-VAR models with stochastic volatility," Energy Economics, Elsevier, vol. 45(C), pages 66-98.
    4. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    5. Pircalabu, A. & Benth, F.E., 2017. "A regime-switching copula approach to modeling day-ahead prices in coupled electricity markets," Energy Economics, Elsevier, vol. 68(C), pages 283-302.
    6. Pourkhanali, Armin & Kim, Jong-Min & Tafakori, Laleh & Fard, Farzad Alavi, 2016. "Measuring systemic risk using vine-copula," Economic Modelling, Elsevier, vol. 53(C), pages 63-74.
    7. Christiane Baumeister & Lutz Kilian, 2014. "Do oil price increases cause higher food prices? [Biofuels, binding constraints, and agricultural commodity price volatility]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 29(80), pages 691-747.
    8. Li, Meng & Yang, Liang, 2013. "Modeling the volatility of futures return in rubber and oil—A Copula-based GARCH model approach," Economic Modelling, Elsevier, vol. 35(C), pages 576-581.
    9. Mensi, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Yoon, Seong-Min, 2014. "Dynamic spillovers among major energy and cereal commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 225-243.
    10. Narayan, Paresh Kumar & Narayan, Seema & Sharma, Susan Sunila, 2013. "An analysis of commodity markets: What gain for investors?," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3878-3889.
    11. Ahmadi, Maryam & Bashiri Behmiri, Niaz & Manera, Matteo, 2016. "How is volatility in commodity markets linked to oil price shocks?," Energy Economics, Elsevier, vol. 59(C), pages 11-23.
    12. Yip, Pick Schen & Brooks, Robert & Do, Hung Xuan & Nguyen, Duc Khuong, 2020. "Dynamic volatility spillover effects between oil and agricultural products," International Review of Financial Analysis, Elsevier, vol. 69(C).
    13. Garcia, René & Tsafack, Georges, 2011. "Dependence structure and extreme comovements in international equity and bond markets," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1954-1970, August.
    14. Kee-Hong Bae & G. Andrew Karolyi & René M. Stulz, 2003. "A New Approach to Measuring Financial Contagion," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 717-763, July.
    15. Han, Liyan & Zhou, Yimin & Yin, Libo, 2015. "Exogenous impacts on the links between energy and agricultural commodity markets," Energy Economics, Elsevier, vol. 49(C), pages 350-358.
    16. Li, Yuming, 2005. "The Wealth-Consumption Ratio and the Consumption-Habit Ratio," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 226-241, April.
    17. Wang, Yi-Chiuan & Wu, Jyh-Lin & Lai, Yi-Hao, 2013. "A revisit to the dependence structure between the stock and foreign exchange markets: A dependence-switching copula approach," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1706-1719.
    18. Girardi, Giulio & Tolga Ergün, A., 2013. "Systemic risk measurement: Multivariate GARCH estimation of CoVaR," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3169-3180.
    19. Dominguez, Kathryn M.E. & Tesar, Linda L., 2006. "Exchange rate exposure," Journal of International Economics, Elsevier, vol. 68(1), pages 188-218, January.
    20. Wang, Yi-Chiuan & Wu, Jyh-Lin & Lai, Yi-Hao, 2018. "New evidence on asymmetric return–volume dependence and extreme movements," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 212-227.
    21. Salisu, Afees A. & Swaray, Raymond & Oloko, Tirimisiyu F., 2019. "Improving the predictability of the oil–US stock nexus: The role of macroeconomic variables," Economic Modelling, Elsevier, vol. 76(C), pages 153-171.
    22. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    23. Ning, Cathy, 2010. "Dependence structure between the equity market and the foreign exchange market-A copula approach," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 743-759, September.
    24. Okimoto, Tatsuyoshi, 2008. "New Evidence of Asymmetric Dependence Structures in International Equity Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(3), pages 787-815, September.
    25. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    26. Sawssen Araichi & Lotfi Belkacem & Christian de Peretti, 2017. "“Reserve modelling and the aggregation of risks using time varying copula models," Post-Print hal-01764023, HAL.
    27. Dahl, Roy Endré & Oglend, Atle & Yahya, Muhammad, 2020. "Dynamics of volatility spillover in commodity markets: Linking crude oil to agriculture," Journal of Commodity Markets, Elsevier, vol. 20(C).
    28. Sun, Xiaolei & Liu, Chang & Wang, Jun & Li, Jianping, 2020. "Assessing the extreme risk spillovers of international commodities on maritime markets: A GARCH-Copula-CoVaR approach," International Review of Financial Analysis, Elsevier, vol. 68(C).
    29. Yahya, Muhammad & Oglend, Atle & Dahl, Roy Endré, 2019. "Temporal and spectral dependence between crude oil and agricultural commodities: A wavelet-based copula approach," Energy Economics, Elsevier, vol. 80(C), pages 277-296.
    30. Harald Hau & Hélène Rey, 2006. "Exchange Rates, Equity Prices, and Capital Flows," The Review of Financial Studies, Society for Financial Studies, vol. 19(1), pages 273-317.
    31. Algieri, Bernardina & Leccadito, Arturo, 2017. "Assessing contagion risk from energy and non-energy commodity markets," Energy Economics, Elsevier, vol. 62(C), pages 312-322.
    32. Reboredo, Juan C. & Ugolini, Andrea, 2015. "Systemic risk in European sovereign debt markets: A CoVaR-copula approach," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 214-244.
    33. Ji, Qiang & Bouri, Elie & Roubaud, David & Shahzad, Syed Jawad Hussain, 2018. "Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model," Energy Economics, Elsevier, vol. 75(C), pages 14-27.
    34. repec:oup:ecpoli:v:29:y:2014:i:80:p:691-747 is not listed on IDEAS
    35. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    36. Tastan, Hüseyin, 2006. "Estimating time-varying conditional correlations between stock and foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 445-458.
    37. Cumperayot, Phornchanok & Keijzer, Tjeert & Kouwenberg, Roy, 2006. "Linkages between extreme stock market and currency returns," Journal of International Money and Finance, Elsevier, vol. 25(3), pages 528-550, April.
    38. Wallace E. Tyner, 2010. "The integration of energy and agricultural markets," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 193-201, November.
    39. Meng, Juan & Nie, He & Mo, Bin & Jiang, Yonghong, 2020. "Risk spillover effects from global crude oil market to China’s commodity sectors," Energy, Elsevier, vol. 202(C).
    40. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    41. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    42. Kleinow, Jacob & Moreira, Fernando, 2016. "Systemic risk among European banks: A copula approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 42(C), pages 27-42.
    43. Lourme, Alexandre & Maurer, Frantz, 2017. "Testing the Gaussian and Student's t copulas in a risk management framework," Economic Modelling, Elsevier, vol. 67(C), pages 203-214.
    44. Koirala, Krishna H. & Mishra, Ashok K. & D'Antoni, Jeremy M. & Mehlhorn, Joey E., 2015. "Energy prices and agricultural commodity prices: Testing correlation using copulas method," Energy, Elsevier, vol. 81(C), pages 430-436.
    45. Vance L. Martin & Mardi Dungey, 2007. "Unravelling financial market linkages during crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 89-119.
    46. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2016. "Downside and upside risk spillovers between exchange rates and stock prices," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 76-96.
    47. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    48. Araichi, Sawssen & Peretti, Christian de & Belkacem, Lotfi, 2017. "Reserve modelling and the aggregation of risks using time varying copula models," Economic Modelling, Elsevier, vol. 67(C), pages 149-158.
    49. Ji, Qiang & Liu, Bing-Yue & Nehler, Henrik & Uddin, Gazi Salah, 2018. "Uncertainties and extreme risk spillover in the energy markets: A time-varying copula-based CoVaR approach," Energy Economics, Elsevier, vol. 76(C), pages 115-126.
    50. Mensi, Walid & Tiwari, Aviral & Bouri, Elie & Roubaud, David & Al-Yahyaee, Khamis H., 2017. "The dependence structure across oil, wheat, and corn: A wavelet-based copula approach using implied volatility indexes," Energy Economics, Elsevier, vol. 66(C), pages 122-139.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Yu & Wang, Yizhi & Vigne, Samuel A. & Ma, Zhenyu, 2023. "Alarming contagion effects: The dangerous ripple effect of extreme price spillovers across crude oil, carbon emission allowance, and agriculture futures markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    2. Waseem Khan & Vishal Sharma & Saghir Ahmad Ansari, 2022. "Modeling the dynamics of oil and agricultural commodity price nexus in linear and nonlinear frameworks: A case of emerging economy," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1733-1784, August.
    3. Ben Ameur, Hachmi & Ftiti, Zied & Louhichi, Waël, 2021. "Intraday spillover between commodity markets," Resources Policy, Elsevier, vol. 74(C).
    4. Soliman, Alaa M. & Lau, Chi Keung & Cai, Yifei & Sarker, Provash Kumer & Dastgir, Shabbir, 2023. "Asymmetric Effects of Energy Inflation, Agri-inflation and CPI on Agricultural Output: Evidence from NARDL and SVAR Models for the UK," Energy Economics, Elsevier, vol. 126(C).
    5. Zhou, Wei-Xing & Dai, Yun-Shi & Duong, Kiet Tuan & Dai, Peng-Fei, 2024. "The impact of the Russia-Ukraine conflict on the extreme risk spillovers between agricultural futures and spots," Journal of Economic Behavior & Organization, Elsevier, vol. 217(C), pages 91-111.
    6. Ling, Aifan & Li, Jinlong & Zhang, Yugui, 2023. "Can firms with higher ESG ratings bear higher bank systemic tail risk spillover?—Evidence from Chinese A-share market," Pacific-Basin Finance Journal, Elsevier, vol. 80(C).
    7. Zhuo Chen & Bo Yan & Hanwen Kang, 2022. "Dynamic correlation between crude oil and agricultural futures markets," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1798-1849, August.
    8. Wang, Qin & Li, Xianhua, 2024. "Copula-MIDAS-TRV model for risk spillover analysis − Evidence from the Chinese stock market," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    9. Li, Songsong & Zhang, Weiqian & Zhang, Wei, 2023. "Dynamic time-frequency connectedness and risk spillover between geopolitical risks and natural resources," Resources Policy, Elsevier, vol. 82(C).
    10. Naeem, Muhammad Abubakr & Hasan, Mudassar & Arif, Muhammad & Suleman, Muhammad Tahir & Kang, Sang Hoon, 2022. "Oil and gold as a hedge and safe-haven for metals and agricultural commodities with portfolio implications," Energy Economics, Elsevier, vol. 105(C).
    11. Dai, Yun-Shi & Dai, Peng-Fei & Zhou, Wei-Xing, 2023. "Tail dependence structure and extreme risk spillover effects between the international agricultural futures and spot markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    12. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Adewuyi, Adeolu O. & Lee, Chien-Chiang, 2022. "Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Energy Economics, Elsevier, vol. 113(C).
    13. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    14. Zhou, Xiaoran & Enilov, Martin & Parhi, Mamata, 2024. "Does oil spin the commodity wheel? Quantile connectedness with a common factor error structure across energy and agricultural markets," Energy Economics, Elsevier, vol. 132(C).
    15. Bossman, Ahmed & Gubareva, Mariya & Teplova, Tamara, 2023. "Asymmetric effects of market uncertainties on agricultural commodities," Energy Economics, Elsevier, vol. 127(PB).
    16. James Ming Chen & Mobeen Ur Rehman, 2021. "A Pattern New in Every Moment: The Temporal Clustering of Markets for Crude Oil, Refined Fuels, and Other Commodities," Energies, MDPI, vol. 14(19), pages 1-58, September.
    17. Ding, Shusheng & Wang, Kaihao & Cui, Tianxiang & Du, Min, 2023. "The time-varying impact of geopolitical risk on natural resource prices: The post-COVID era evidence," Resources Policy, Elsevier, vol. 86(PB).
    18. Yan-Hong Yang & Ying-Hui Shao & Wei-Xing Zhou, 2024. "Quantile connectedness across BRICS and international grain futures markets: Insights from the Russia-Ukraine conflict," Papers 2409.19307, arXiv.org.
    19. Hung, Ngo Thai, 2021. "Oil prices and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Resources Policy, Elsevier, vol. 73(C).
    20. Aye, Goodness C. & Odhiambo, Nicholas M., 2021. "Oil prices and agricultural growth in South Africa: A threshold analysis," Resources Policy, Elsevier, vol. 73(C).
    21. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2022. "Spillover effects between commodity and stock markets: A SDSES approach," Resources Policy, Elsevier, vol. 79(C).
    22. Linjie Wang & Jean‐Paul Chavas & Jian Li, 2024. "Dynamic linkages in agricultural and energy markets: A quantile impulse response approach," Agricultural Economics, International Association of Agricultural Economists, vol. 55(4), pages 639-676, July.
    23. Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel & Trabelsi, Nader & Wohar, Mark, 2024. "Do shipping freight markets impact commodity markets?," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 986-1014.
    24. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    25. Liya Hau & Huiming Zhu & Muhammad Shahbaz & Ke Huang, 2023. "Quantile Dependence between Crude Oil and China’s Biofuel Feedstock Commodity Market," Sustainability, MDPI, vol. 15(11), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Satish & Tiwari, Aviral Kumar & Chauhan, Yogesh & Ji, Qiang, 2019. "Dependence structure between the BRICS foreign exchange and stock markets using the dependence-switching copula approach," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 273-284.
    2. Aviral Kumar Tiwari & Sangram Keshari Jena & Satish Kumar & Erik Hille, 2022. "Is oil price risk systemic to sectoral equity markets of an oil importing country? Evidence from a dependence-switching copula delta CoVaR approach," Annals of Operations Research, Springer, vol. 315(1), pages 429-461, August.
    3. Ji, Qiang & Bouri, Elie & Roubaud, David & Shahzad, Syed Jawad Hussain, 2018. "Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model," Energy Economics, Elsevier, vol. 75(C), pages 14-27.
    4. Wang, Yi-Chiuan & Wu, Jyh-Lin & Lai, Yi-Hao, 2013. "A revisit to the dependence structure between the stock and foreign exchange markets: A dependence-switching copula approach," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1706-1719.
    5. Zhuo Chen & Bo Yan & Hanwen Kang, 2022. "Dynamic correlation between crude oil and agricultural futures markets," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1798-1849, August.
    6. Jain, Prachi & Maitra, Debasish, 2023. "Risk implications of dependence in the commodities: A copula-based analysis," Global Finance Journal, Elsevier, vol. 57(C).
    7. Tiwari, Aviral Kumar & Boachie, Micheal Kofi & Suleman, Muhammed Tahir & Gupta, Rangan, 2021. "Structure dependence between oil and agricultural commodities returns: The role of geopolitical risks," Energy, Elsevier, vol. 219(C).
    8. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Adewuyi, Adeolu O. & Lee, Chien-Chiang, 2022. "Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Energy Economics, Elsevier, vol. 113(C).
    9. Farid, Saqib & Naeem, Muhammad Abubakr & Paltrinieri, Andrea & Nepal, Rabindra, 2022. "Impact of COVID-19 on the quantile connectedness between energy, metals and agriculture commodities," Energy Economics, Elsevier, vol. 109(C).
    10. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    11. Naeem, Muhammad Abubakr & Hasan, Mudassar & Arif, Muhammad & Suleman, Muhammad Tahir & Kang, Sang Hoon, 2022. "Oil and gold as a hedge and safe-haven for metals and agricultural commodities with portfolio implications," Energy Economics, Elsevier, vol. 105(C).
    12. Liu, Xiang-dong & Pan, Fei & Cai, Wen-li & Peng, Rui, 2020. "Correlation and risk measurement modeling: A Markov-switching mixed Clayton copula approach," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    13. Cheng, Natalie Fang Ling & Hasanov, Akram Shavkatovich & Poon, Wai Ching & Bouri, Elie, 2023. "The US-China trade war and the volatility linkages between energy and agricultural commodities," Energy Economics, Elsevier, vol. 120(C).
    14. Wu, Chih-Chiang & Chen, Wei-Peng & Korsakul, Nattawadee, 2021. "Extreme linkages between foreign exchange and general financial markets," Pacific-Basin Finance Journal, Elsevier, vol. 65(C).
    15. Li, Xiafei & Wei, Yu, 2018. "The dependence and risk spillover between crude oil market and China stock market: New evidence from a variational mode decomposition-based copula method," Energy Economics, Elsevier, vol. 74(C), pages 565-581.
    16. Zhou, Xiaoran & Enilov, Martin & Parhi, Mamata, 2024. "Does oil spin the commodity wheel? Quantile connectedness with a common factor error structure across energy and agricultural markets," Energy Economics, Elsevier, vol. 132(C).
    17. Bai, Xiwen, 2021. "Tanker freight rates and economic policy uncertainty: A wavelet-based copula approach," Energy, Elsevier, vol. 235(C).
    18. Mensah, Jones Odei & Premaratne, Gamini, 2014. "Dependence patterns among Banking Sectors in Asia: A Copula Approach," MPRA Paper 60119, University Library of Munich, Germany.
    19. Meng, Juan & Nie, He & Mo, Bin & Jiang, Yonghong, 2020. "Risk spillover effects from global crude oil market to China’s commodity sectors," Energy, Elsevier, vol. 202(C).
    20. Albulescu, Claudiu Tiberiu & Tiwari, Aviral Kumar & Ji, Qiang, 2020. "Copula-based local dependence among energy, agriculture and metal commodities markets," Energy, Elsevier, vol. 202(C).

    More about this item

    Keywords

    Agricultural commodities; Oil; CoVaR; Dependence-switching copula; Tail dependence;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • Q1 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:72:y:2021:i:c:s0301420721000660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.