IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v91y2021ics0966692321000053.html
   My bibliography  Save this article

A deeper investigation into the effect of the built environment on the use of ridehailing for non-work travel

Author

Listed:
  • Malik, Jai
  • Bunch, David S.
  • Handy, Susan
  • Circella, Giovanni

Abstract

Ridehailing has become a main-stream mobility option in many cities around the world. Many factors can influence an individual's decision to use ridehailing over other modes, and the growing need of policy makers to make built-environment and regulatory decisions related to ridehailing requires an increased understanding of these. This study develops a model that estimates how the built environment affects the decision to choose ridehailing for making non-work trips, while carefully accounting for a variety of confounding effects that could potentially bias the results (if ignored or improperly incorporated). These include: total number of trips, differences in supply between urban and non-urban areas, residential choice (e.g. urban versus non-urban areas), and household choice of whether to own a vehicle. We use individual-level data from a California travel survey that includes detailed attitude measurements to estimate an integrated choice and latent variable (ICLV) model to properly specify these effects. We include accessibility measures used elsewhere (e.g., Walkscore) plus measures developed for this study. Our analysis estimates the effect of these measures on ridehailing mode share, and how they differ between urban and non-urban areas. This analysis results in several major findings: we confirm that omission of latent preferences for residential location and vehicle ownership from the analysis can lead to biased results; previous studies may have overestimated the complementarity or substitution relationships between public transit and ridehailing by ignoring confounding effects; and even after accounting for other effects, individuals living in vibrant and walkable neighborhoods have a higher mode share for ridehailing (potentially using it instead of active modes).

Suggested Citation

  • Malik, Jai & Bunch, David S. & Handy, Susan & Circella, Giovanni, 2021. "A deeper investigation into the effect of the built environment on the use of ridehailing for non-work travel," Journal of Transport Geography, Elsevier, vol. 91(C).
  • Handle: RePEc:eee:jotrge:v:91:y:2021:i:c:s0966692321000053
    DOI: 10.1016/j.jtrangeo.2021.102952
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692321000053
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2021.102952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Felipe F. Dias & Patrícia S. Lavieri & Venu M. Garikapati & Sebastian Astroza & Ram M. Pendyala & Chandra R. Bhat, 2017. "A behavioral choice model of the use of car-sharing and ride-sourcing services," Transportation, Springer, vol. 44(6), pages 1307-1323, November.
    2. Vij, Akshay & Walker, Joan L., 2016. "How, when and why integrated choice and latent variable models are latently useful," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 192-217.
    3. Alemi, Farzad, 2018. "What Makes Travelers Use Ridehailing? Exploring the Latent Constructs behind the Adoption and Frequency of Use of Ridehailing Services, and Their Impacts on the Use of Other Travel Modes," Institute of Transportation Studies, Working Paper Series qt1cm0j0vm, Institute of Transportation Studies, UC Davis.
    4. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    5. Rayle, Lisa & Dai, Danielle & Chan, Nelson & Cervero, Robert & Shaheen, Susan, 2016. "Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco," Transport Policy, Elsevier, vol. 45(C), pages 168-178.
    6. Alemi, Farzad & Circella, Giovanni & Mokhtarian, Patricia & Handy, Susan, 2018. "Exploring the latent constructs behind the use of ridehailing in California," Journal of choice modelling, Elsevier, vol. 29(C), pages 47-62.
    7. Salon, Deborah, 2015. "Heterogeneity in the relationship between the built environment and driving: Focus on neighborhood type and travel purpose," Research in Transportation Economics, Elsevier, vol. 52(C), pages 34-45.
    8. Susan Handy, 2017. "Thoughts on the Meaning of Mark Stevens’s Meta-Analysis," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(1), pages 26-28, January.
    9. Hughes, Ryan & MacKenzie, Don, 2016. "Transportation network company wait times in Greater Seattle, and relationship to socioeconomic indicators," Journal of Transport Geography, Elsevier, vol. 56(C), pages 36-44.
    10. Rayle, Lisa & Dai, Danielle & Chan, Nelson & Cervero, Robert & Shaheen, Susan PhD, 2016. "Just A Better Taxi? A Survey-Based Comparison of Taxis, Transit, and Ridesourcing Services in San Francisco," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt60v8r346, Institute of Transportation Studies, UC Berkeley.
    11. Malalgoda, Narendra & Lim, Siew Hoon, 2019. "Do transportation network companies reduce public transit use in the U.S.?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 351-372.
    12. Handy, Susan L., 1992. "Regional versus Local Accessibility: Variations in Suburban Form and the Effects on Non-Work Travel," University of California Transportation Center, Working Papers qt3rs4s3gc, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oded Cats & Rafal Kucharski & Santosh Rao Danda & Menno Yap, 2022. "Beyond the dichotomy: How ride-hailing competes with and complements public transport," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-17, January.
    2. Steven R. Gehrke & Michael P. Huff, 2024. "Spatial equity implications and neighborhood indicators of ridehailing trip frequency and vehicle miles traveled in the phoenix metro region," Transportation, Springer, vol. 51(1), pages 271-295, February.
    3. Rico Krueger & Michel Bierlaire & Prateek Bansal, 2022. "A Data Fusion Approach for Ride-sourcing Demand Estimation: A Discrete Choice Model with Sampling and Endogeneity Corrections," Papers 2212.02178, arXiv.org.
    4. Sangwan Lee, 2022. "Exploring Associations between Multimodality and Built Environment Characteristics in the U.S," Sustainability, MDPI, vol. 14(11), pages 1-16, May.
    5. Yan, Yingying & Zhong, Shiquan & Tian, Junfang & Jia, Ning, 2022. "An empirical study on consumer automobile purchase intentions influenced by the COVID-19 outbreak," Journal of Transport Geography, Elsevier, vol. 104(C).
    6. Hossain Mohiuddin & Md Musfiqur Rahman Bhuiya & Shaila Jamal & Zhi Chen, 2022. "Exploring the Choice of Bicycling and Walking in Rajshahi, Bangladesh: An Application of Integrated Choice and Latent Variable (ICLV) Models," Sustainability, MDPI, vol. 14(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dean, Matthew D. & Kockelman, Kara M., 2021. "Spatial variation in shared ride-hail trip demand and factors contributing to sharing: Lessons from Chicago," Journal of Transport Geography, Elsevier, vol. 91(C).
    2. Soria, Jason & Stathopoulos, Amanda, 2021. "Investigating socio-spatial differences between solo ridehailing and pooled rides in diverse communities," Journal of Transport Geography, Elsevier, vol. 95(C).
    3. Goodspeed, Robert & Xie, Tian & Dillahunt, Tawanna R. & Lustig, Josh, 2019. "An alternative to slow transit, drunk driving, and walking in bad weather: An exploratory study of ridesourcing mode choice and demand," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    4. Kong, Hui & Zhang, Xiaohu & Zhao, Jinhua, 2020. "How does ridesourcing substitute for public transit? A geospatial perspective in Chengdu, China," Journal of Transport Geography, Elsevier, vol. 86(C).
    5. Ngo, Nicole S. & Götschi, Thomas & Clark, Benjamin Y., 2021. "The effects of ride-hailing services on bus ridership in a medium-sized urban area using micro-level data: Evidence from the Lane Transit District," Transport Policy, Elsevier, vol. 105(C), pages 44-53.
    6. Loa, Patrick & Nurul Habib, Khandker, 2021. "Examining the influence of attitudinal factors on the use of ride-hailing services in Toronto," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 13-28.
    7. Vij, Akshay & Ryan, Stacey & Sampson, Spring & Harris, Susan, 2020. "Consumer preferences for on-demand transport in Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 823-839.
    8. Li, Shengxiao(Alex) & Zhai, Wei & Jiao, Junfeng & Wang, Chao (Kenneth), 2022. "Who loses and who wins in the ride-hailing era? A case study of Austin, Texas," Transport Policy, Elsevier, vol. 120(C), pages 130-138.
    9. Loa, Patrick & Hossain, Sanjana & Liu, Yicong & Nurul Habib, Khandker, 2022. "How has the COVID-19 pandemic affected the use of ride-sourcing services? An empirical evidence-based investigation for the Greater Toronto Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 46-62.
    10. Nair, Gopindra S. & Bhat, Chandra R. & Batur, Irfan & Pendyala, Ram M. & Lam, William H.K., 2020. "A model of deadheading trips and pick-up locations for ride-hailing service vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 289-308.
    11. Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2020. "Using machine learning for direct demand modeling of ridesourcing services in Chicago," Journal of Transport Geography, Elsevier, vol. 83(C).
    12. Qiao, Si & Yeh, Anthony Gar-On, 2021. "Is ride-hailing a valuable means of transport in newly developed areas under TOD-oriented urbanization in China? Evidence from Chengdu City," Journal of Transport Geography, Elsevier, vol. 96(C).
    13. Aguilera-García, Álvaro & Gomez, Juan & Velázquez, Guillermo & Vassallo, Jose Manuel, 2022. "Ridesourcing vs. traditional taxi services: Understanding users’ choices and preferences in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 161-178.
    14. de Oliveira Souza, Camilla & Vitorino Guimarães, Gabriella & da Cruz Saldanha, Luiz Emerson & Almeida Corrêa do Nascimento, Filipe & Floriano dos Santos, Tálita & Vieira da Silva, Marcelino Aurélio, 2021. "Analysis of job accessibility promoted by ride hailing services: A proposed method," Journal of Transport Geography, Elsevier, vol. 93(C).
    15. Zou, Zhenpeng & Cirillo, Cinzia, 2021. "Does ridesourcing impact driving decisions: A survey weighted regression analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 1-12.
    16. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    17. Kumar, Akshay & Gupta, Akshay & Parida, Manoranjan & Chauhan, Vivek, 2022. "Service quality assessment of ride-sourcing services: A distinction between ride-hailing and ride-sharing services," Transport Policy, Elsevier, vol. 127(C), pages 61-79.
    18. He, Zhengbing, 2021. "Portraying ride-hailing mobility using multi-day trip order data: A case study of Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 152-169.
    19. Barajas, Jesus M. & Brown, Anne, 2021. "Not minding the gap: Does ride-hailing serve transit deserts?," Journal of Transport Geography, Elsevier, vol. 90(C).
    20. Gehrke, Steven R., 2020. "Uber service area expansion in three major American cities," Journal of Transport Geography, Elsevier, vol. 86(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:91:y:2021:i:c:s0966692321000053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.