IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v132y2020icp823-839.html
   My bibliography  Save this article

Consumer preferences for on-demand transport in Australia

Author

Listed:
  • Vij, Akshay
  • Ryan, Stacey
  • Sampson, Spring
  • Harris, Susan

Abstract

On-demand transport (ODT) refers to adaptive transport services that use a fleet of vehicles to provide shared flexible transport to consumers, when and where they need it. This study surveyed 3,985 geographically and demographically representative Australians nationwide, to understand consumer demand and willingness to pay for ODT in Australia. Our analysis finds that the current market for ODT services in Australia is small. For example, for an ODT service that costs roughly the same as UberX’s ridesharing service, and offers comparable level-of-service, our analysis predicts that only 17 per cent of the Australian population can be expected to use the service a few times a week or more. However, shared electric autonomous vehicles could significantly change the business case for ODT services, by enabling on-demand door-to-door transport services at a fractional cost of similar existing services. Our analysis finds that while consumers are willing to pay, on average, 0.28$/km more to avoid sharing a vehicle with other passengers, 0.17$/km more for door-to-door service, and 0.10$/km to be able to book the service in real time, cost is the most important determinant of ODT use (of the service attributes included in our analysis). For an ODT service that provides the same level-of-service as UberX, but at a fractional cost of $0.30 per km, 31 per cent of the Australian population can be expected to use the service a few times a week or more. And this figure is likely to be larger once we account for more long-term changes in lifestyles that might accompany the introduction of these services. We find that frequency of ODT use is strongly correlated with age and lifecycle stage: young individuals who are employed full-time are likely to use ODT most frequently; older adults who have retired from the workforce and whose children have left home are likely to be infrequent users. Overall, our analysis indicates that ODT services have the ability to both increase public transport use among existing public transport customers, and to draw new customers to public transport services.

Suggested Citation

  • Vij, Akshay & Ryan, Stacey & Sampson, Spring & Harris, Susan, 2020. "Consumer preferences for on-demand transport in Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 823-839.
  • Handle: RePEc:eee:transa:v:132:y:2020:i:c:p:823-839
    DOI: 10.1016/j.tra.2019.12.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856418313636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2019.12.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David P. Brown & David E. M. Sappington, 2016. "On the optimal design of demand response policies," Journal of Regulatory Economics, Springer, vol. 49(3), pages 265-291, June.
    2. Felipe F. Dias & Patrícia S. Lavieri & Venu M. Garikapati & Sebastian Astroza & Ram M. Pendyala & Chandra R. Bhat, 2017. "A behavioral choice model of the use of car-sharing and ride-sourcing services," Transportation, Springer, vol. 44(6), pages 1307-1323, November.
    3. Felix Becker & Kay W. Axhausen, 2017. "Literature review on surveys investigating the acceptance of automated vehicles," Transportation, Springer, vol. 44(6), pages 1293-1306, November.
    4. Rayle, Lisa & Dai, Danielle & Chan, Nelson & Cervero, Robert & Shaheen, Susan PhD, 2016. "Just A Better Taxi? A Survey-Based Comparison of Taxis, Transit, and Ridesourcing Services in San Francisco," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt60v8r346, Institute of Transportation Studies, UC Berkeley.
    5. Daniel J. Fagnant & Kara M. Kockelman, 2018. "Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas," Transportation, Springer, vol. 45(1), pages 143-158, January.
    6. Christina Pakusch & Gunnar Stevens & Alexander Boden & Paul Bossauer, 2018. "Unintended Effects of Autonomous Driving: A Study on Mobility Preferences in the Future," Sustainability, MDPI, vol. 10(7), pages 1-22, July.
    7. Rayle, Lisa & Dai, Danielle & Chan, Nelson & Cervero, Robert & Shaheen, Susan, 2016. "Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco," Transport Policy, Elsevier, vol. 45(C), pages 168-178.
    8. Chao Wang & Mohammed Quddus & Marcus Enoch & Tim Ryley & Lisa Davison, 2014. "Multilevel modelling of Demand Responsive Transport (DRT) trips in Greater Manchester based on area-wide socio-economic data," Transportation, Springer, vol. 41(3), pages 589-610, May.
    9. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    10. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    11. Alemi, Farzad & Circella, Giovanni & Mokhtarian, Patricia & Handy, Susan, 2018. "Exploring the latent constructs behind the use of ridehailing in California," Journal of choice modelling, Elsevier, vol. 29(C), pages 47-62.
    12. Ryley, Tim J. & A. Stanley, Peter & P. Enoch, Marcus & M. Zanni, Alberto & A. Quddus, Mohammed, 2014. "Investigating the contribution of Demand Responsive Transport to a sustainable local public transport system," Research in Transportation Economics, Elsevier, vol. 48(C), pages 364-372.
    13. Adam Stocker & Susan Shaheen, 2017. "Shared Automated Vehicles: Review of Business Models," International Transport Forum Discussion Papers 2017/09, OECD Publishing.
    14. Hao Chen & Hengzhen Huang & Dennis K. J. Lin & Min‐Qian Liu, 2016. "Uniform sliced Latin hypercube designs," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 32(5), pages 574-584, September.
    15. Thor Berger & Carl Benedikt Frey & Guy Levin & Santosh Rao Danda, 2019. "Uber happy? Work and well-being in the 'Gig Economy'," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 34(99), pages 429-477.
    16. David L. A. Gordon, 2016. "Urban design pedagogy in smaller cities and schools," Journal of Urban Design, Taylor & Francis Journals, vol. 21(5), pages 558-560, September.
    17. Philipp König & David Pothier, 2016. "Design and Pitfalls of Basel’s New Liquidity Rules," DIW Economic Bulletin, DIW Berlin, German Institute for Economic Research, vol. 6(21), pages 251-259.
    18. Lavieri, Patrícia S. & Bhat, Chandra R., 2019. "Modeling individuals’ willingness to share trips with strangers in an autonomous vehicle future," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 242-261.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Almlöf, Erik & Nybacka, Mikael & Pernestål, Anna & Jenelius, Erik, 2022. "Will leisure trips be more affected than work trips by autonomous technology? Modelling self-driving public transport and cars in Stockholm, Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 1-19.
    2. Sonia Nasri & Hend Bouziri & Wassila Aggoune-Mtalaa, 2022. "An Evolutionary Descent Algorithm for Customer-Oriented Mobility-On-Demand Problems," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    3. Boddupalli, Sreekar-Shashank & Garrow, Laurie A. & German, Brian J. & Newman, Jeffrey P., 2024. "Mode choice modeling for an electric vertical takeoff and landing (eVTOL) air taxi commuting service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    4. He, Zhengbing, 2021. "Portraying ride-hailing mobility using multi-day trip order data: A case study of Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 152-169.
    5. Kayikci, Yasanur & Kabadurmus, Ozgur, 2022. "Barriers to the adoption of the mobility-as-a-service concept: The case of Istanbul, a large emerging metropolis," Transport Policy, Elsevier, vol. 129(C), pages 219-236.
    6. Bushell, James & Merkert, Rico & Beck, Matthew J., 2022. "Consumer preferences for operator collaboration in intra- and intercity transport ecosystems: Institutionalising platforms to facilitate MaaS 2.0," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 160-178.
    7. Soltani, Ali & Allan, Andrew & Khalaj, Fahimeh & Pojani, Dorina & Mehdizadeh, Milad, 2021. "Ridesharing in Adelaide: Segmentation of users," Journal of Transport Geography, Elsevier, vol. 92(C).
    8. Schasché, Stephanie E. & Sposato, Robert G. & Hampl, Nina, 2022. "The dilemma of demand-responsive transport services in rural areas: Conflicting expectations and weak user acceptance," Transport Policy, Elsevier, vol. 126(C), pages 43-54.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dean, Matthew D. & Kockelman, Kara M., 2021. "Spatial variation in shared ride-hail trip demand and factors contributing to sharing: Lessons from Chicago," Journal of Transport Geography, Elsevier, vol. 91(C).
    2. Soria, Jason & Stathopoulos, Amanda, 2021. "Investigating socio-spatial differences between solo ridehailing and pooled rides in diverse communities," Journal of Transport Geography, Elsevier, vol. 95(C).
    3. Oh, Simon & Seshadri, Ravi & Azevedo, Carlos Lima & Kumar, Nishant & Basak, Kakali & Ben-Akiva, Moshe, 2020. "Assessing the impacts of automated mobility-on-demand through agent-based simulation: A study of Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 367-388.
    4. Loa, Patrick & Hossain, Sanjana & Liu, Yicong & Nurul Habib, Khandker, 2022. "How has the COVID-19 pandemic affected the use of ride-sourcing services? An empirical evidence-based investigation for the Greater Toronto Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 46-62.
    5. Malik, Jai & Bunch, David S. & Handy, Susan & Circella, Giovanni, 2021. "A deeper investigation into the effect of the built environment on the use of ridehailing for non-work travel," Journal of Transport Geography, Elsevier, vol. 91(C).
    6. Schaller, Bruce, 2021. "Can sharing a ride make for less traffic? Evidence from Uber and Lyft and implications for cities," Transport Policy, Elsevier, vol. 102(C), pages 1-10.
    7. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    8. Loa, Patrick & Nurul Habib, Khandker, 2021. "Examining the influence of attitudinal factors on the use of ride-hailing services in Toronto," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 13-28.
    9. Xu, Zhengtian & Yin, Yafeng & Zha, Liteng, 2017. "Optimal parking provision for ride-sourcing services," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 559-578.
    10. Zgheib, Najib & Abou-Zeid, Maya & Kaysi, Isam, 2020. "Modeling demand for ridesourcing as feeder for high capacity mass transit systems with an application to the planned Beirut BRT," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 70-91.
    11. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    12. Saeed, Tariq Usman & Burris, Mark W. & Labi, Samuel & Sinha, Kumares C., 2020. "An empirical discourse on forecasting the use of autonomous vehicles using consumers’ preferences," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    13. Vinayak, Pragun & Dias, Felipe F. & Astroza, Sebastian & Bhat, Chandra R. & Pendyala, Ram M. & Garikapati, Venu M., 2018. "Accounting for multi-dimensional dependencies among decision-makers within a generalized model framework: An application to understanding shared mobility service usage levels," Transport Policy, Elsevier, vol. 72(C), pages 129-137.
    14. Ilahi, Anugrah & Belgiawan, Prawira F. & Balac, Milos & Axhausen, Kay W., 2021. "Understanding travel and mode choice with emerging modes; a pooled SP and RP model in Greater Jakarta, Indonesia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 398-422.
    15. Tirachini, Alejandro & del Río, Mariana, 2019. "Ride-hailing in Santiago de Chile: Users’ characterisation and effects on travel behaviour," Transport Policy, Elsevier, vol. 82(C), pages 46-57.
    16. Alonso-González, María J. & Hoogendoorn-Lanser, Sascha & van Oort, Niels & Cats, Oded & Hoogendoorn, Serge, 2020. "Drivers and barriers in adopting Mobility as a Service (MaaS) – A latent class cluster analysis of attitudes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 378-401.
    17. Kumar, Akshay & Gupta, Akshay & Parida, Manoranjan & Chauhan, Vivek, 2022. "Service quality assessment of ride-sourcing services: A distinction between ride-hailing and ride-sharing services," Transport Policy, Elsevier, vol. 127(C), pages 61-79.
    18. Wu, Min & Wang, Nanxi & Yuen, Kum Fai, 2023. "Can autonomy level and anthropomorphic characteristics affect public acceptance and trust towards shared autonomous vehicles?," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    19. Ravula, Prashanth, 2022. "Monetary and hassle savings as strategic variables in the ride-sharing market," Research in Transportation Economics, Elsevier, vol. 94(C).
    20. Berrebi, Simon J. & Watkins, Kari E., 2020. "Who’s ditching the bus?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 21-34.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:132:y:2020:i:c:p:823-839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.