IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2212.02178.html
   My bibliography  Save this paper

A Data Fusion Approach for Ride-sourcing Demand Estimation: A Discrete Choice Model with Sampling and Endogeneity Corrections

Author

Listed:
  • Rico Krueger
  • Michel Bierlaire
  • Prateek Bansal

Abstract

Ride-sourcing services offered by companies like Uber and Didi have grown rapidly in the last decade. Understanding the demand for these services is essential for planning and managing modern transportation systems. Existing studies develop statistical models for ride-sourcing demand estimation at an aggregate level due to limited data availability. These models lack foundations in microeconomic theory, ignore competition of ride-sourcing with other travel modes, and cannot be seamlessly integrated into existing individual-level (disaggregate) activity-based models to evaluate system-level impacts of ride-sourcing services. In this paper, we present and apply an approach for estimating ride-sourcing demand at a disaggregate level using discrete choice models and multiple data sources. We first construct a sample of trip-based mode choices in Chicago, USA by enriching household travel survey with publicly available ride-sourcing and taxi trip records. We then formulate a multivariate extreme value-based discrete choice with sampling and endogeneity corrections to account for the construction of the estimation sample from multiple data sources and endogeneity biases arising from supply-side constraints and surge pricing mechanisms in ride-sourcing systems. Our analysis of the constructed dataset reveals insights into the influence of various socio-economic, land use and built environment features on ride-sourcing demand. We also derive elasticities of ride-sourcing demand relative to travel cost and time. Finally, we illustrate how the developed model can be employed to quantify the welfare implications of ride-sourcing policies and regulations such as terminating certain types of services and introducing ride-sourcing taxes.

Suggested Citation

  • Rico Krueger & Michel Bierlaire & Prateek Bansal, 2022. "A Data Fusion Approach for Ride-sourcing Demand Estimation: A Discrete Choice Model with Sampling and Endogeneity Corrections," Papers 2212.02178, arXiv.org.
  • Handle: RePEc:arx:papers:2212.02178
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2212.02178
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edwards, Mickey, 2020. "Nonstandard ridehail use in Austin," Journal of Transport Geography, Elsevier, vol. 86(C).
    2. Dean, Matthew D. & Kockelman, Kara M., 2021. "Spatial variation in shared ride-hail trip demand and factors contributing to sharing: Lessons from Chicago," Journal of Transport Geography, Elsevier, vol. 91(C).
    3. Wen, Chieh-Hua & Huang, Chia-Jung & Fu, Chiang, 2020. "Incorporating continuous representation of preferences for flight departure times into stated itinerary choice modeling," Transport Policy, Elsevier, vol. 98(C), pages 10-20.
    4. Jerry Hausman & Gregory Leonard & J. Douglas Zona, 1994. "Competitive Analysis with Differentiated Products," Annals of Economics and Statistics, GENES, issue 34, pages 143-157.
    5. repec:adr:anecst:y:1994:i:34:p:06 is not listed on IDEAS
    6. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    7. Malik, Jai & Bunch, David S. & Handy, Susan & Circella, Giovanni, 2021. "A deeper investigation into the effect of the built environment on the use of ridehailing for non-work travel," Journal of Transport Geography, Elsevier, vol. 91(C).
    8. Guevara, C. Angelo, 2015. "Critical assessment of five methods to correct for endogeneity in discrete-choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 240-254.
    9. Lurkin, Virginie & Garrow, Laurie A. & Higgins, Matthew J. & Newman, Jeffrey P. & Schyns, Michael, 2017. "Accounting for price endogeneity in airline itinerary choice models: An application to Continental U.S. markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 228-246.
    10. Hasnine, Md Sami & Hawkins, Jason & Habib, Khandker Nurul, 2021. "Effects of built environment and weather on demands for transportation network company trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 171-185.
    11. Lam, Chungsang Tom & Liu, Meng & Hui, Xiang, 2021. "The geography of ridesharing: A case study on New York City," Information Economics and Policy, Elsevier, vol. 57(C).
    12. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    13. Soltani, Ali & Allan, Andrew & Khalaj, Fahimeh & Pojani, Dorina & Mehdizadeh, Milad, 2021. "Ridesharing in Adelaide: Segmentation of users," Journal of Transport Geography, Elsevier, vol. 92(C).
    14. Bierlaire, M. & Bolduc, D. & McFadden, D., 2008. "The estimation of generalized extreme value models from choice-based samples," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 381-394, May.
    15. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    16. Yan, Xiang & Zhao, Xilei & Han, Yuan & Hentenryck, Pascal Van & Dillahunt, Tawanna, 2021. "Mobility-on-demand versus fixed-route transit systems: An evaluation of traveler preferences in low-income communities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 481-495.
    17. Lazarus, Jessica R. & Caicedo, Juan D. & Bayen, Alexandre M. & Shaheen, Susan A., 2021. "To Pool or Not to Pool? Understanding opportunities, challenges, and equity considerations to expanding the market for pooling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 199-222.
    18. Alejandro Tirachini, 2020. "Ride-hailing, travel behaviour and sustainable mobility: an international review," Transportation, Springer, vol. 47(4), pages 2011-2047, August.
    19. Haitao Yu & Zhong-Ren Peng, 2020. "The impacts of built environment on ridesourcing demand: A neighbourhood level analysis in Austin, Texas," Urban Studies, Urban Studies Journal Limited, vol. 57(1), pages 152-175, January.
    20. Koppelman, Frank S. & Coldren, Gregory M. & Parker, Roger A., 2008. "Schedule delay impacts on air-travel itinerary demand," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 263-273, March.
    21. Gopalakrishnan, Raja & Guevara, C. Angelo & Ben-Akiva, Moshe, 2020. "Combining multiple imputation and control function methods to deal with missing data and endogeneity in discrete-choice models," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 45-57.
    22. Mirko Goletz & Francisco J. Bahamonde-Birke, 2021. "The ride-sourcing industry: status-quo and outlook," Transportation Planning and Technology, Taylor & Francis Journals, vol. 44(6), pages 561-576, August.
    23. Cristian Angelo Guevara & Moshe E. Ben-Akiva, 2012. "Change of Scale and Forecasting with the Control-Function Method in Logit Models," Transportation Science, INFORMS, vol. 46(3), pages 425-437, August.
    24. Habib, Khandker Nurul, 2019. "Mode choice modelling for hailable rides: An investigation of the competition of Uber with other modes by using an integrated non-compensatory choice model with probabilistic choice set formation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 205-216.
    25. Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2020. "Using machine learning for direct demand modeling of ridesourcing services in Chicago," Journal of Transport Geography, Elsevier, vol. 83(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lurkin, Virginie & Garrow, Laurie A. & Higgins, Matthew J. & Newman, Jeffrey P. & Schyns, Michael, 2017. "Accounting for price endogeneity in airline itinerary choice models: An application to Continental U.S. markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 228-246.
    2. Fukushi, Mitsuyoshi & Delgado, Felipe & Raveau, Sebastián, 2024. "Impact of omitted variable and simultaneous estimation endogeneity in choice-based revenue management systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    3. Thomas E. Guerrero & C. Angelo Guevara & Elisabetta Cherchi & Juan de Dios Ortúzar, 2021. "Addressing endogeneity in strategic urban mode choice models," Transportation, Springer, vol. 48(4), pages 2081-2102, August.
    4. Guerrero, Thomas E. & Guevara, C. Angelo & Cherchi, Elisabetta & Ortúzar, Juan de Dios, 2022. "Characterizing the impact of discrete indicators to correct for endogeneity in discrete choice models," Journal of choice modelling, Elsevier, vol. 42(C).
    5. Gopalakrishnan, Raja & Guevara, C. Angelo & Ben-Akiva, Moshe, 2020. "Combining multiple imputation and control function methods to deal with missing data and endogeneity in discrete-choice models," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 45-57.
    6. Guevara, C. Angelo & Tang, Yue & Gao, Song, 2018. "The initial condition problem with complete history dependency in learning models for travel choices," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 850-861.
    7. Guevara, C. Angelo, 2018. "Overidentification tests for the exogeneity of instruments in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 241-253.
    8. Lurkin, Virginie & Garrow, Laurie A. & Higgins, Matthew J. & Newman, Jeffrey P. & Schyns, Michael, 2018. "Modeling competition among airline itineraries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 157-172.
    9. Hotle, Susan L. & Castillo, Marco & Garrow, Laurie A. & Higgins, Matthew J., 2015. "The impact of advance purchase deadlines on airline consumers’ search and purchase behaviors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 1-16.
    10. Fernández-Antolín, Anna & Guevara, C. Angelo & de Lapparent, Matthieu & Bierlaire, Michel, 2016. "Correcting for endogeneity due to omitted attitudes: Empirical assessment of a modified MIS method using RP mode choice data," Journal of choice modelling, Elsevier, vol. 20(C), pages 1-15.
    11. Danaf, Mazen & Guevara, Angelo & Atasoy, Bilge & Ben-Akiva, Moshe, 2020. "Endogeneity in adaptive choice contexts: Choice-based recommender systems and adaptive stated preferences surveys," Journal of choice modelling, Elsevier, vol. 34(C).
    12. Danaf, Mazen & Guevara, C. Angelo & Ben-Akiva, Moshe, 2023. "A control-function correction for endogeneity in random coefficients models: The case of choice-based recommender systems," Journal of choice modelling, Elsevier, vol. 46(C).
    13. Tovar, Jorge, 2012. "Consumers’ Welfare and Trade Liberalization: Evidence from the Car Industry in Colombia," World Development, Elsevier, vol. 40(4), pages 808-820.
    14. Steven T. Berry & Philip A. Haile, 2021. "Foundations of Demand Estimation," Cowles Foundation Discussion Papers 2301, Cowles Foundation for Research in Economics, Yale University.
    15. Watanabe, Hajime & Maruyama, Takuya, 2023. "A Bayesian instrumental variable model for multinomial choice with correlated alternatives," Journal of choice modelling, Elsevier, vol. 46(C).
    16. Peter Davis & Pasquale Schiraldi, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
    17. Hasselwander, Marc & Bigotte, Joao F. & Antunes, Antonio P. & Sigua, Ricardo G., 2022. "Towards sustainable transport in developing countries: Preliminary findings on the demand for mobility-as-a-service (MaaS) in Metro Manila," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 501-518.
    18. Carlos Pérez Montes, 2013. "The impact of interbank and public debt markets on the competition for bank deposits," Working Papers 1319, Banco de España.
    19. Stijn Kelchtermans & Frank Verboven, 2010. "Participation and study decisions in a public system of higher education," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(3), pages 355-391.
    20. Xiaoxia Dong & Erick Guerra & Ricardo A. Daziano, 2022. "Impact of TNC on travel behavior and mode choice: a comparative analysis of Boston and Philadelphia," Transportation, Springer, vol. 49(6), pages 1577-1597, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2212.02178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.