IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v41y2014icp184-196.html
   My bibliography  Save this article

Assessing High-Speed Rail’s impacts on land cover change in large urban areas based on spatial mixed logit methods: a case study of Madrid Atocha railway station from 1990 to 2006

Author

Listed:
  • Shen, Yu
  • de Abreu e Silva, João
  • Martínez, Luis Miguel

Abstract

This paper proposes an accessibility-based spatial mixed logit (SML) model with panel data structure to examine the impacts of High-Speed Rail (HSR) on land cover change in large urban areas. Using data between 1990 and 2006, impacts of the Spanish HSR on Madrid’s Atocha railway station influence area – a 20km radius buffer centred on the station – were investigated. To model the HSR impacts, besides socioeconomic variables, the development of both local and regional transportation networks with corresponding accessibility improvement is also taken into account to segregate the impacts of land-cover change brought by different sources of accessibility measures. In this study, two SML models are used: one incorporates regional accessibility indicators as a base model, and the other does not, acting as a control model. The model estimation results reveal that the reduction of the local and regional weighted travel average time has positive impacts on the Atocha station catchment area’s urbanised land-cover rates. Although the base and control models both achieve high goodness-of-fit values, the base model that considers regional accessibility reveals a better goodness-of-fit statistic and is more robust than the control model. It is concluded that the improvement of regional accessibility due to the arrival of HSR at Atocha station plays an essential role in the urbanisation of land cover changes in the study area.

Suggested Citation

  • Shen, Yu & de Abreu e Silva, João & Martínez, Luis Miguel, 2014. "Assessing High-Speed Rail’s impacts on land cover change in large urban areas based on spatial mixed logit methods: a case study of Madrid Atocha railway station from 1990 to 2006," Journal of Transport Geography, Elsevier, vol. 41(C), pages 184-196.
  • Handle: RePEc:eee:jotrge:v:41:y:2014:i:c:p:184-196
    DOI: 10.1016/j.jtrangeo.2014.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692314002129
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2014.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Smirnov, Oleg A. & Egan, Kevin J., 2012. "Spatial random utility model with an application to recreation demand," Economic Modelling, Elsevier, vol. 29(1), pages 72-78.
    2. Lumbreras, J. & Valdés, M. & Borge, R. & Rodriguez, M.E., 2008. "Assessment of vehicle emissions projections in Madrid (Spain) from 2004 to 2012 considering several control strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(4), pages 646-658, May.
    3. R White & G Engelen, 1993. "Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns," Environment and Planning A, , vol. 25(8), pages 1175-1199, August.
    4. Mejia-Dorantes, Lucia & Paez, Antonio & Vassallo, Jose Manuel, 2012. "Transportation infrastructure impacts on firm location: the effect of a new metro line in the suburbs of Madrid," Journal of Transport Geography, Elsevier, vol. 22(C), pages 236-250.
    5. Kingsley E. Haynes, 1997. "Labor markets and regional transportation improvements: the case of high-speed trains An introduction and review," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(1), pages 57-76.
    6. K Spiekermann & M Wegener, 1994. "The Shrinking Continent: New Time—Space Maps of Europe," Environment and Planning B, , vol. 21(6), pages 653-673, December.
    7. Christopher P. HOOD, 2010. "The Shinkansen's Local Impact," Social Science Japan Journal, University of Tokyo and Oxford University Press, vol. 13(2), pages 211-225.
    8. Miguel Mateos & Paul Pfaffenbichler, 2005. "Location and transport effects of high occupancy vehicle and bus lanes in Madrid," ERSA conference papers ersa05p144, European Regional Science Association.
    9. Bin Zhou & Kara Kockelman, 2008. "Neighborhood impacts on land use change: a multinomial logit model of spatial relationships," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(2), pages 321-340, June.
    10. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    11. De Rus Mendoza Ginés (ed.), 2009. "Economic Analysis of High Speed Rail in Europe," Reports, Fundacion BBVA / BBVA Foundation, number 2011112, spring.
    12. Jasper Willigers & Han Floor & Bert van Wee, 2007. "Accessibility Indicators for Location Choices of Offices: An Application to the Intraregional Distributive Effects of High-Speed Rail in the Netherlands," Environment and Planning A, , vol. 39(9), pages 2086-2898, September.
    13. Chia-Lin Chen & Peter Hall, 2011. "The Wider Spatial-Economic Impacts of High-Speed Trains: A Comparative Case Study of the Lille and Manchester Sub-Regions," ERSA conference papers ersa10p335, European Regional Science Association.
    14. Willigers, Jasper & van Wee, Bert, 2011. "High-speed rail and office location choices. A stated choice experiment for the Netherlands," Journal of Transport Geography, Elsevier, vol. 19(4), pages 745-754.
    15. Campos, Javier & de Rus, Ginés, 2009. "Some stylized facts about high-speed rail: A review of HSR experiences around the world," Transport Policy, Elsevier, vol. 16(1), pages 19-28, January.
    16. Ahlfeldt, Gabriel M. & Wendland, Nicolai, 2011. "Fifty years of urban accessibility: The impact of the urban railway network on the land gradient in Berlin 1890-1936," Regional Science and Urban Economics, Elsevier, vol. 41(2), pages 77-88, March.
    17. Vickerman, R W, 1995. "The Regional Impacts of Trans-European Networks," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 29(2), pages 237-254, May.
    18. Antonio Páez & Darren M Scott, 2007. "Social Influence on Travel Behavior: A Simulation Example of the Decision to Telecommute," Environment and Planning A, , vol. 39(3), pages 647-665, March.
    19. Nijkamp, Peter, 1987. "Discrete spatial choice analysis : Editorial introduction," Regional Science and Urban Economics, Elsevier, vol. 17(1), pages 1-2, February.
    20. Yves Crozet, 2005. "Time and passenger transport," Post-Print halshs-00194583, HAL.
    21. Israel, Emil & Cohen-Blankshtain, Galit, 2010. "Testing the decentralization effects of rail systems: Empirical findings from Israel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(7), pages 523-536, August.
    22. Brons, Martijn & Givoni, Moshe & Rietveld, Piet, 2009. "Access to railway stations and its potential in increasing rail use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 136-149, February.
    23. Wang, Xiaokun (Cara) & Kockelman, Kara M. & Lemp, Jason D., 2012. "The dynamic spatial multinomial probit model: analysis of land use change using parcel-level data," Journal of Transport Geography, Elsevier, vol. 24(C), pages 77-88.
    24. Basse, Reine Maria, 2013. "A constrained cellular automata model to simulate the potential effects of high-speed train stations on land-use dynamics in trans-border regions," Journal of Transport Geography, Elsevier, vol. 32(C), pages 23-37.
    25. Moshe Givoni, 2006. "Development and Impact of the Modern High‐speed Train: A Review," Transport Reviews, Taylor & Francis Journals, vol. 26(5), pages 593-611, January.
    26. Smirnov, Oleg A., 2010. "Modeling spatial discrete choice," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 292-298, September.
    27. Antonio Páez & Darren M Scott & Erik Volz, 2008. "A Discrete-Choice Approach to Modeling Social Influence on Individual Decision Making," Environment and Planning B, , vol. 35(6), pages 1055-1069, December.
    28. Klaus Spiekermann & Michael Wegener, 2006. "Accessibility and spatial Development in Europe," SCIENZE REGIONALI, FrancoAngeli Editore, vol. 2006(2).
    29. M Batty, 1998. "Urban Evolution on the Desktop: Simulation with the Use of Extended Cellular Automata," Environment and Planning A, , vol. 30(11), pages 1943-1967, November.
    30. Chen, Chia-Lin & Hall, Peter, 2011. "The impacts of high-speed trains on British economic geography: a study of the UK’s InterCity 125/225 and its effects," Journal of Transport Geography, Elsevier, vol. 19(4), pages 689-704.
    31. Sener, Ipek N. & Pendyala, Ram M. & Bhat, Chandra R., 2011. "Accommodating spatial correlation across choice alternatives in discrete choice models: an application to modeling residential location choice behavior," Journal of Transport Geography, Elsevier, vol. 19(2), pages 294-303.
    32. Bhat, Chandra R. & Guo, Jessica, 2004. "A mixed spatially correlated logit model: formulation and application to residential choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 147-168, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Deng & Li, Shicheng, 2022. "Spatiotemporal impact of railway network in the Qinghai-Tibet Plateau on accessibility and economic linkages during 1984–2030," Journal of Transport Geography, Elsevier, vol. 100(C).
    2. Niu, Fangqu & Xin, Zhongling & Sun, Dongqi, 2021. "Urban land use effects of high-speed railway network in China: A spatial spillover perspective," Land Use Policy, Elsevier, vol. 105(C).
    3. Zhu, Xinhua & Qian, Tiannan & Wei, Yigang, 2020. "Do high-speed railways accelerate urban land expansion in China? A study based on the multi-stage difference-in-differences model," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    4. Deng, Taotao & Wang, Dandan & Hu, Yukun & Liu, Shuang, 2020. "Did high-speed railway cause urban space expansion? ——Empirical evidence from China's prefecture-level cities," Research in Transportation Economics, Elsevier, vol. 80(C).
    5. Hu, Zhibin & Wu, Guangdong & Han, Yilong & Niu, Yanliang, 2023. "Unraveling the dynamic changes of high-speed rail network with urban development: Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    6. (Ato) Xu, Wangtu & Huang, Ying, 2019. "The correlation between HSR construction and economic development – Empirical study of Chinese cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 24-36.
    7. S., Minal & Chalumuri (Ch.), Ravi Sekhar, 2016. "Commuter's sensitivity in mode choice: An empirical study of New Delhi," Journal of Transport Geography, Elsevier, vol. 57(C), pages 207-217.
    8. Ruan, Qingsong & Lv, Dayong & Wei, Xiaokun, 2024. "High-speed rail and local government financing cost: Evidence from China," Economic Modelling, Elsevier, vol. 131(C).
    9. Mohsen Momenitabar & Zhila Dehdari Ebrahimi & Mohammad Arani, 2020. "A Systematic and Analytical Review of the Socioeconomic and Environmental Impact of the Deployed High-Speed Rail (HSR) Systems on the World," Papers 2003.04452, arXiv.org, revised Mar 2020.
    10. Xu, Wangtu (Ato) & Long, Ying & Zhang, Wei, 2019. "Prioritizing future funding and construction of the planned high-speed rail corridors of China – According to regional structure and urban land development potential indices," Transport Policy, Elsevier, vol. 81(C), pages 381-395.
    11. Zhu, Xinhua & Dai, Chun & Wei, Yigang, 2022. "Does the opening of high-speed railway improve air quality? Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    12. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
    13. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system," Journal of Transport Geography, Elsevier, vol. 54(C), pages 218-227.
    14. Liansheng Zheng & Juncheng Li & Zhihua Zhao, 2022. "High‐Speed Rail Service and the Issuance of Municipal Corporate Bonds," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 30(4), pages 230-254, July.
    15. Mu, Rui & de Jong, Martin & Ma, Yongchi & Xi, Bao, 2015. "Trading off public values in High-Speed Rail development in China," Journal of Transport Geography, Elsevier, vol. 43(C), pages 66-77.
    16. Weichen Liu & Jiaying Guo & Wei Wu & Youhui Cao, 2022. "The evolution of regional spatial structure influenced by passenger rail service: A case study of the Yangtze River Delta," Growth and Change, Wiley Blackwell, vol. 53(2), pages 651-679, June.
    17. Yu, Danlin & Murakami, Daisuke & Zhang, Yaojun & Wu, Xiwei & Li, Ding & Wang, Xiaoxi & Li, Guangdong, 2020. "Investigating high-speed rail construction's support to county level regional development in China: An eigenvector based spatial filtering panel data analysis," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 21-37.
    18. Zhang, Yaoyu & Liu, Jin & Wang, Bo, 2022. "The impact of High-Speed Rails on urban expansion: An investigation using an SDID with dynamic effects method," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smirnov, Oleg A. & Egan, Kevin J., 2012. "Spatial random utility model with an application to recreation demand," Economic Modelling, Elsevier, vol. 29(1), pages 72-78.
    2. Nannan Yu & Tianhang Cui & Si Lv, 2023. "Does the High-Speed Rail Improve Employment in Peripheral Cities? Evidence From China’s Beijing–Shanghai HSR Line," SAGE Open, , vol. 13(4), pages 21582440231, December.
    3. Smirnov, Oleg A., 2010. "Modeling spatial discrete choice," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 292-298, September.
    4. Chou, Jui-Sheng & Chien, Ya-Ling & Nguyen, Ngoc-Mai & Truong, Dinh-Nhat, 2018. "Pricing policy of floating ticket fare for riding high speed rail based on time-space compression," Transport Policy, Elsevier, vol. 69(C), pages 179-192.
    5. Stefano Mainardi, 2021. "Preference heterogeneity, neighbourhood effects and basic services: logit kernel models for farmers’ climate adaptation in Ethiopia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6869-6912, May.
    6. Wang, Xiaokun (Cara) & Kockelman, Kara M. & Lemp, Jason D., 2012. "The dynamic spatial multinomial probit model: analysis of land use change using parcel-level data," Journal of Transport Geography, Elsevier, vol. 24(C), pages 77-88.
    7. Basse, Reine Maria, 2013. "A constrained cellular automata model to simulate the potential effects of high-speed train stations on land-use dynamics in trans-border regions," Journal of Transport Geography, Elsevier, vol. 32(C), pages 23-37.
    8. Chandra, Shailesh & Vadali, Sharada, 2014. "Evaluating accessibility impacts of the proposed America 2050 high-speed rail corridor for the Appalachian Region," Journal of Transport Geography, Elsevier, vol. 37(C), pages 28-46.
    9. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    10. Cartenì, Armando & Pariota, Luigi & Henke, Ilaria, 2017. "Hedonic value of high-speed rail services: Quantitative analysis of the students’ domestic tourist attractiveness of the main Italian cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 348-365.
    11. Weiss, Adam & Habib, Khandker Nurul, 2017. "Examining the difference between park and ride and kiss and ride station choices using a spatially weighted error correlation (SWEC) discrete choice model," Journal of Transport Geography, Elsevier, vol. 59(C), pages 111-119.
    12. Daniel Albalate & Germá Bel, 2015. "La experiencia internacional en alta velocidad ferroviaria," Working Papers 2015-02, FEDEA.
    13. Yu Shen & Jinhua Zhao, 2017. "Capacity constrained accessibility of high-speed rail," Transportation, Springer, vol. 44(2), pages 395-422, March.
    14. Buczkowska, Sabina & de Lapparent, Matthieu, 2014. "Location choices of newly created establishments: Spatial patterns at the aggregate level," Regional Science and Urban Economics, Elsevier, vol. 48(C), pages 68-81.
    15. Sener, Ipek N. & Pendyala, Ram M. & Bhat, Chandra R., 2011. "Accommodating spatial correlation across choice alternatives in discrete choice models: an application to modeling residential location choice behavior," Journal of Transport Geography, Elsevier, vol. 19(2), pages 294-303.
    16. Campos, Javier & de Rus, Ginés, 2009. "Some stylized facts about high-speed rail: A review of HSR experiences around the world," Transport Policy, Elsevier, vol. 16(1), pages 19-28, January.
    17. José-Benito Pérez-López & Margarita Novales & Francisco-Alberto Varela-García & Alfonso Orro, 2020. "Residential Location Econometric Choice Modeling with Irregular Zoning: Common Border Spatial Correlation Metric," Networks and Spatial Economics, Springer, vol. 20(3), pages 785-802, September.
    18. Haque, Md Bashirul & Choudhury, Charisma & Hess, Stephane, 2020. "Understanding differences in residential location preferences between ownership and renting: A case study of London," Journal of Transport Geography, Elsevier, vol. 88(C).
    19. Pike, Susan & Lubell, Mark, 2018. "The conditional effects of social influence in transportation mode choice," Research in Transportation Economics, Elsevier, vol. 68(C), pages 2-10.
    20. Perez-Lopez, Jose-Benito & Novales, Margarita & Orro, Alfonso, 2022. "Spatially correlated nested logit model for spatial location choice," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:41:y:2014:i:c:p:184-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.