IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v80y2020ics0739885920300299.html
   My bibliography  Save this article

Did high-speed railway cause urban space expansion? ——Empirical evidence from China's prefecture-level cities

Author

Listed:
  • Deng, Taotao
  • Wang, Dandan
  • Hu, Yukun
  • Liu, Shuang

Abstract

Based on a panel dataset with 247 prefecture-level cities from 2006 to 2015 in China, this paper uses a multi-stage difference-in-differences (DID) model to examine the impact of high-speed railway (HSR) opening and frequency on urban space expansion. Moreover, the heterogeneous effects of HSR were explored in terms of the location conditions of the city and HSR station. The main conclusions are shown as follows: (1) The multi-stage DID results reveal that the opening of HSR has significantly promoted the expansion of urban space. (2) Besides the direct connection by HSR, the daily frequency of HSR trains also plays a key role in affecting urban space expansion. (3) The effects of HSR on urban space expansion are different depending on the location conditions of the city and HSR station. First, the cities with a suburban HSR station are likely to experience greater urban expansion than other HSR-connected cities. Second, due to the higher-level economic openness and base, the cities located in the eastern China are more likely to be affected by HSR in terms of urban space expansion. Finally, the advantage in agglomeration environments makes the cities within an urban agglomeration more susceptible to HSR connection.

Suggested Citation

  • Deng, Taotao & Wang, Dandan & Hu, Yukun & Liu, Shuang, 2020. "Did high-speed railway cause urban space expansion? ——Empirical evidence from China's prefecture-level cities," Research in Transportation Economics, Elsevier, vol. 80(C).
  • Handle: RePEc:eee:retrec:v:80:y:2020:i:c:s0739885920300299
    DOI: 10.1016/j.retrec.2020.100840
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885920300299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2020.100840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diego Puga, 2008. "Agglomeration and cross-border infrastructure," Working Papers 2008-06, Instituto Madrileño de Estudios Avanzados (IMDEA) Ciencias Sociales.
    2. Shen, Yu & de Abreu e Silva, João & Martínez, Luis Miguel, 2014. "Assessing High-Speed Rail’s impacts on land cover change in large urban areas based on spatial mixed logit methods: a case study of Madrid Atocha railway station from 1990 to 2006," Journal of Transport Geography, Elsevier, vol. 41(C), pages 184-196.
    3. Jia, Shanming & Zhou, Chunyu & Qin, Chenglin, 2017. "No difference in effect of high-speed rail on regional economic growth based on match effect perspective?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 144-157.
    4. Li, Hongchang & Strauss, Jack & Shunxiang, Hu & Lui, Lu, 2018. "Do high-speed railways lead to urban economic growth in China? A panel data study of China’s cities," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 70-89.
    5. Bel, Germà & Holst, Maximilian, 2018. "Evaluation of the impact of Bus Rapid Transit on air pollution in Mexico City," Transport Policy, Elsevier, vol. 63(C), pages 209-220.
    6. Komei Sasaki & Tadahiro Ohashi & Asao Ando, 1997. "High-speed rail transit impact on regional systems: does the Shinkansen contribute to dispersion?," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(1), pages 77-98.
    7. Diego Puga, 2002. "European regional policies in light of recent location theories," Journal of Economic Geography, Oxford University Press, vol. 2(4), pages 373-406, October.
    8. Ortega, Emilio & López, Elena & Monzón, Andrés, 2014. "Territorial cohesion impacts of high-speed rail under different zoning systems," Journal of Transport Geography, Elsevier, vol. 34(C), pages 16-24.
    9. Dena Kasraian & Kees Maat & Dominic Stead & Bert van Wee, 2016. "Long-term impacts of transport infrastructure networks on land-use change: an international review of empirical studies," Transport Reviews, Taylor & Francis Journals, vol. 36(6), pages 772-792, November.
    10. Makoto Okumura & Kiyoshi Kobayashi, 1997. "The growth of city systems with high-speed railway systems," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(1), pages 39-56.
    11. Shao, Shuai & Tian, Zhihua & Yang, Lili, 2017. "High speed rail and urban service industry agglomeration: Evidence from China's Yangtze River Delta region," Journal of Transport Geography, Elsevier, vol. 64(C), pages 174-183.
    12. Meng, Xuechen & Lin, Shanlang & Zhu, Xiaochuan, 2018. "The resource redistribution effect of high-speed rail stations on the economic growth of neighbouring regions: Evidence from China," Transport Policy, Elsevier, vol. 68(C), pages 178-191.
    13. Ke, Xiao & Chen, Haiqiang & Hong, Yongmiao & Hsiao, Cheng, 2017. "Do China's high-speed-rail projects promote local economy?—New evidence from a panel data approach," China Economic Review, Elsevier, vol. 44(C), pages 203-226.
    14. Mi Diao & Yi Zhu & Jiren Zhu, 2017. "Intra-city access to inter-city transport nodes: The implications of high-speed-rail station locations for the urban development of Chinese cities," Urban Studies, Urban Studies Journal Limited, vol. 54(10), pages 2249-2267, August.
    15. Nathaniel Baum-Snow, 2007. "Did Highways Cause Suburbanization?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(2), pages 775-805.
    16. Kaifang Shi & Yun Chen & Bailang Yu & Tingbao Xu & Linyi Li & Chang Huang & Rui Liu & Zuoqi Chen & Jianping Wu, 2016. "Urban Expansion and Agricultural Land Loss in China: A Multiscale Perspective," Sustainability, MDPI, vol. 8(8), pages 1-16, August.
    17. Christophe Beckerich & Sylvie Benoit & Marie Delaplace, 2019. "Are the reasons for companies to locate around central versus peripheral high-speed rail stations different? The cases of Reims central station and Champagne-Ardenne station," European Planning Studies, Taylor & Francis Journals, vol. 27(3), pages 574-594, March.
    18. Inmaculada Mohíno & Marie Delaplace & José M. de Ureña, 2019. "The influence of metropolitan integration and type of HSR connections on developments around stations. The case of cities within one hour from Madrid and Paris," International Planning Studies, Taylor & Francis Journals, vol. 24(2), pages 156-179, April.
    19. Rebeca Fontanilla Andong & Edsel Sajor, 2017. "Urban sprawl, public transport, and increasing CO2 emissions: the case of Metro Manila, Philippines," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(1), pages 99-123, February.
    20. Zhang, Wenxin & Nian, Peihao & Lyu, Guowei, 2016. "A multimodal approach to assessing accessibility of a high-speed railway station," Journal of Transport Geography, Elsevier, vol. 54(C), pages 91-101.
    21. Jiao, Jingjuan & Wang, Jiaoe & Jin, Fengjun & Dunford, Michael, 2014. "Impacts on accessibility of China’s present and future HSR network," Journal of Transport Geography, Elsevier, vol. 40(C), pages 123-132.
    22. Yatang Lin & Yu Qin & Zhuan Xie, 2016. "High-speed rail in China," CentrePiece - The magazine for economic performance 484, Centre for Economic Performance, LSE.
    23. Lin, Yatang, 2017. "Travel costs and urban specialization patterns: Evidence from China’s high speed railway system," Journal of Urban Economics, Elsevier, vol. 98(C), pages 98-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bose, Udichibarna & Arun, Thankom & Arun, Shoba, 2021. "Do information networks benefit households with female heads?," Economic Modelling, Elsevier, vol. 103(C).
    2. Deng, Xin & Yu, Mingzhe, 2021. "Scale of cities and social trust: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 215-228.
    3. Hu, Zhibin & Wu, Guangdong & Han, Yilong & Niu, Yanliang, 2023. "Unraveling the dynamic changes of high-speed rail network with urban development: Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    4. Li, Yunfeng & Zhu, Weiping & Jiang, Xiaoxi & Yıldırım, Bilal, 2023. "Unraveling the complexity of China's sustainable development: A study on the interplay of natural resources, urbanization, and public transportation," Resources Policy, Elsevier, vol. 86(PA).
    5. Bottasso, Anna & Conti, Maurizio & Costacurta de Sa Porto, Paulo & Ferrari, Claudio & Tei, Alessio, 2021. "Roads to growth: The Brazilian way," Research in Transportation Economics, Elsevier, vol. 90(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xiaolan & Wang, Rui & Guo, Dongmei & Sun, Weizeng, 2020. "The reconfiguration effect of China's high-speed railway on intercity connection ——A study based on media attention index," Transport Policy, Elsevier, vol. 95(C), pages 47-56.
    2. Jin, Mengjie & Lin, Kun-Chin & Shi, Wenming & Lee, Paul T.W. & Li, Kevin X., 2020. "Impacts of high-speed railways on economic growth and disparity in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 158-171.
    3. Zheng, Longfei & Long, Fenjie & Chang, Zheng & Ye, Jingsong, 2019. "Ghost town or city of hope? The spatial spillover effects of high-speed railway stations in China," Transport Policy, Elsevier, vol. 81(C), pages 230-241.
    4. Yu, Danlin & Murakami, Daisuke & Zhang, Yaojun & Wu, Xiwei & Li, Ding & Wang, Xiaoxi & Li, Guangdong, 2020. "Investigating high-speed rail construction's support to county level regional development in China: An eigenvector based spatial filtering panel data analysis," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 21-37.
    5. Chen, Fanglin & Hao, Xinyue & Chen, Zhongfei, 2021. "Can high-speed rail improve health and alleviate health inequality? Evidence from China," Transport Policy, Elsevier, vol. 114(C), pages 266-279.
    6. Shujie Yao & Jing Fang & Hongbo He, 2020. "Can Time–Space Compression Promote Urban Economic Growth? Evidence from China's High‐speed Rail Projects," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 28(5), pages 90-117, September.
    7. Jiao, Jingjuan & Wang, Jiaoe & Zhang, Fangni & Jin, Fengjun & Liu, Wei, 2020. "Roles of accessibility, connectivity and spatial interdependence in realizing the economic impact of high-speed rail: Evidence from China," Transport Policy, Elsevier, vol. 91(C), pages 1-15.
    8. Chang, Zheng & Diao, Mi & Jing, Kecen & Li, Weifeng, 2021. "High-speed rail and industrial movement: Evidence from China's Greater Bay Area," Transport Policy, Elsevier, vol. 112(C), pages 22-31.
    9. Cascetta, Ennio & Cartenì, Armando & Henke, Ilaria & Pagliara, Francesca, 2020. "Economic growth, transport accessibility and regional equity impacts of high-speed railways in Italy: ten years ex post evaluation and future perspectives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 412-428.
    10. Liu, Mengsha & Jiang, Yan & Wei, Xiaokun & Ruan, Qingsong & Lv, Dayong, 2023. "Effect of high-speed rail on entrepreneurial activities: Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    11. Yang, Xuehui & Zhang, Huirong & Li, Yan, 2022. "High-speed railway, factor flow and enterprise innovation efficiency: An empirical analysis on micro data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    12. Jun‐Teng Ma & Tie‐Ying Liu, 2022. "Does the high‐speed rail network improve economic growth?," Papers in Regional Science, Wiley Blackwell, vol. 101(1), pages 183-208, February.
    13. Wang, Yongpei & Guan, Zhongyu & Zhang, Qian, 2023. "Railway opening and carbon emissions in distressed areas: Evidence from China's state-level poverty-stricken counties," Transport Policy, Elsevier, vol. 130(C), pages 55-67.
    14. Baek, Jisun & Park, WooRam, 2022. "The impact of improved passenger transport system on manufacturing plant productivity," Regional Science and Urban Economics, Elsevier, vol. 96(C).
    15. Yang, Zhiwei & Li, Can & Jiao, Jingjuan & Liu, Wei & Zhang, Fangni, 2020. "On the joint impact of high-speed rail and megalopolis policy on regional economic growth in China," Transport Policy, Elsevier, vol. 99(C), pages 20-30.
    16. Di Matteo, Dante & Mariotti, Ilaria & Rossi, Federica, 2023. "Transport infrastructure and economic performance: An evaluation of the Milan-Bologna high-speed rail corridor," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    17. Jin, Mengjie & Shi, Wenming & Liu, Yu & Xu, Xiaoling & Li, Kevin X., 2022. "Heterogeneous impact of high speed railway on income distribution: A case study in China," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    18. Suchi Kapoor Malhotra & Howard White & Nina Ashley O. Dela Cruz & Ashrita Saran & John Eyers & Denny John & Ella Beveridge & Nina Blöndal, 2021. "Studies of the effectiveness of transport sector interventions in low‐ and middle‐income countries: An evidence and gap map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(4), December.
    19. Li, Yan & Chen, Zhenhua & Wang, Peng, 2020. "Impact of high-speed rail on urban economic efficiency in China," Transport Policy, Elsevier, vol. 97(C), pages 220-231.
    20. Liaoliao Duan & Dongxiao Niu & Weizeng Sun & Siqi Zheng, 2021. "Transportation infrastructure and capital mobility: evidence from China’s high-speed railways," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 67(3), pages 617-648, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:80:y:2020:i:c:s0739885920300299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.