IDEAS home Printed from https://ideas.repec.org/a/sae/sagope/v13y2023i4p21582440231219351.html
   My bibliography  Save this article

Does the High-Speed Rail Improve Employment in Peripheral Cities? Evidence From China’s Beijing–Shanghai HSR Line

Author

Listed:
  • Nannan Yu
  • Tianhang Cui
  • Si Lv

Abstract

This study addresses the impacts of high-speed rail (HSR) on the employment rate on the periphery of HSR-connected cities. Using the Chinese municipal-level data sets of 2001 to 2017s, we have found that HSR could improve the average employment in peripheral cities on the route. However, HSR negatively affects employment in small and medium-sized peripheral cities while the large-sized peripheral cities benefit from its operation. Our evidence shows that the “siphon effect†on employment of large-sized peripheral cities on smaller neighbors happened specifically in the manufacturing sectors. This study provides important policy implications for HSR cities with different sizes and characteristics. Small- and medium-sized periphery HSR cities could appropriately response to HSR operation by readjusting the structure of manufacturing sectors, in order to avoiding employment loss.

Suggested Citation

  • Nannan Yu & Tianhang Cui & Si Lv, 2023. "Does the High-Speed Rail Improve Employment in Peripheral Cities? Evidence From China’s Beijing–Shanghai HSR Line," SAGE Open, , vol. 13(4), pages 21582440231, December.
  • Handle: RePEc:sae:sagope:v:13:y:2023:i:4:p:21582440231219351
    DOI: 10.1177/21582440231219351
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/21582440231219351
    Download Restriction: no

    File URL: https://libkey.io/10.1177/21582440231219351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vickerman, Roger, 2015. "High-speed rail and regional development: the case of intermediate stations," Journal of Transport Geography, Elsevier, vol. 42(C), pages 157-165.
    2. Kingsley E. Haynes, 1997. "Labor markets and regional transportation improvements: the case of high-speed trains An introduction and review," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(1), pages 57-76.
    3. Nathaniel Baum-Snow & Ronni Pavan, 2012. "Understanding the City Size Wage Gap," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(1), pages 88-127.
    4. Benjamin Faber, 2014. "Trade Integration, Market Size, and Industrialization: Evidence from China's National Trunk Highway System," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(3), pages 1046-1070.
    5. Li, Yan & Chen, Zhenhua & Wang, Peng, 2020. "Impact of high-speed rail on urban economic efficiency in China," Transport Policy, Elsevier, vol. 97(C), pages 220-231.
    6. Daniel F Heuermann & Johannes F Schmieder, 2019. "The effect of infrastructure on worker mobility: evidence from high-speed rail expansion in Germany," Journal of Economic Geography, Oxford University Press, vol. 19(2), pages 335-372.
    7. Komei Sasaki & Tadahiro Ohashi & Asao Ando, 1997. "High-speed rail transit impact on regional systems: does the Shinkansen contribute to dispersion?," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(1), pages 77-98.
    8. Gabriel M Ahlfeldt & Arne Feddersen, 2018. "From periphery to core: measuring agglomeration effects using high-speed rail," Journal of Economic Geography, Oxford University Press, vol. 18(2), pages 355-390.
    9. Baum-Snow, Nathaniel & Henderson, J. Vernon & Turner, Matthew A. & Zhang, Qinghua & Brandt, Loren, 2020. "Does investment in national highways help or hurt hinterland city growth?," Journal of Urban Economics, Elsevier, vol. 115(C).
    10. Meng, Xuechen & Lin, Shanlang & Zhu, Xiaochuan, 2018. "The resource redistribution effect of high-speed rail stations on the economic growth of neighbouring regions: Evidence from China," Transport Policy, Elsevier, vol. 68(C), pages 178-191.
    11. Knaap, Thijs & Oosterhaven, Jan, 2011. "Measuring the welfare effects of infrastructure: A simple spatial equilibrium evaluation of Dutch railway proposals," Research in Transportation Economics, Elsevier, vol. 31(1), pages 19-28.
    12. Spilimbergo, Antonio, 1999. "Labor Market Integration, Unemployment, and Transfers," Review of International Economics, Wiley Blackwell, vol. 7(4), pages 641-650, November.
    13. Willigers, Jasper & van Wee, Bert, 2011. "High-speed rail and office location choices. A stated choice experiment for the Netherlands," Journal of Transport Geography, Elsevier, vol. 19(4), pages 745-754.
    14. Dong, Xiaofang & Zheng, Siqi & Kahn, Matthew E., 2020. "The role of transportation speed in facilitating high skilled teamwork across cities," Journal of Urban Economics, Elsevier, vol. 115(C).
    15. Adler, Nicole & Pels, Eric & Nash, Chris, 2010. "High-speed rail and air transport competition: Game engineering as tool for cost-benefit analysis," Transportation Research Part B: Methodological, Elsevier, vol. 44(7), pages 812-833, August.
    16. Taotao Deng & Chen Gan & Yukun Hu, 2021. "Do hotel business benefit from increased tourist accessibility? Evidence from China’s high-speed railway program," Tourism Economics, , vol. 27(7), pages 1357-1374, November.
    17. K. E. Haynes & C. Karlsson & U. Blum, 1997. "Introduction to the special issue The regional and urban effects of high-speed trains," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(1), pages 1-20.
    18. Zheng, Longfei & Long, Fenjie & Chang, Zheng & Ye, Jingsong, 2019. "Ghost town or city of hope? The spatial spillover effects of high-speed railway stations in China," Transport Policy, Elsevier, vol. 81(C), pages 230-241.
    19. Meng Tian & Tongping Li & Shuwang Yang & Yiwei Wang & Shuke Fu, 2019. "The Impact of High-Speed Rail on the Service-Sector Agglomeration in China," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    20. Huang, Yuxia & Jiang, Chenxin & Wang, Kun & Xiao, Yibin & Zhang, Anming, 2021. "Public-private partnership in high-speed rail financing: Case of uncertain regional economic spillovers in China," Transport Policy, Elsevier, vol. 106(C), pages 64-75.
    21. Zhigang Li & Hangtian Xu, 2018. "High‐speed railroads and economic geography: Evidence from Japan," Journal of Regional Science, Wiley Blackwell, vol. 58(4), pages 705-727, September.
    22. François Perroux, 1950. "Economic Space: Theory and Applications," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 64(1), pages 89-104.
    23. Kenneth Button, 1998. "original: Infrastructure investment, endogenous growth and economic convergence," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 32(1), pages 145-162.
    24. Moshe Givoni, 2006. "Development and Impact of the Modern High‐speed Train: A Review," Transport Reviews, Taylor & Francis Journals, vol. 26(5), pages 593-611, January.
    25. Zahra Dehghan Shabani & Sima Safaie, 2018. "Do transport infrastructure spillovers matter for economic growth? Evidence on road and railway transport infrastructure in Iranian provinces," Regional Science Policy & Practice, Wiley Blackwell, vol. 10(1), pages 49-63, March.
    26. Sobieralski, Joseph B., 2021. "Transportation infrastructure and employment: Are all investments created equal?," Research in Transportation Economics, Elsevier, vol. 88(C).
    27. Chen, Chia-Lin & Hall, Peter, 2011. "The impacts of high-speed trains on British economic geography: a study of the UK’s InterCity 125/225 and its effects," Journal of Transport Geography, Elsevier, vol. 19(4), pages 689-704.
    28. Lin, Yatang, 2017. "Travel costs and urban specialization patterns: Evidence from China’s high speed railway system," Journal of Urban Economics, Elsevier, vol. 98(C), pages 98-123.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Zheng & Zheng, Longfei, 2022. "High-speed rail and the spatial pattern of new firm births: Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 373-386.
    2. Yang, Xuehui & Zhang, Huirong & Li, Yan, 2022. "High-speed railway, factor flow and enterprise innovation efficiency: An empirical analysis on micro data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    3. Baek, Jisun & Park, WooRam, 2022. "The impact of improved passenger transport system on manufacturing plant productivity," Regional Science and Urban Economics, Elsevier, vol. 96(C).
    4. Huang, Yan & Zong, Huiming, 2020. "The spatial distribution and determinants of China’s high-speed train services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 56-70.
    5. Fangting Chi & Haoying Han, 2023. "The Impact of High-Speed Rail on Economic Development: A County-Level Analysis," Land, MDPI, vol. 12(4), pages 1-22, April.
    6. Liu, Mengsha & Jiang, Yan & Wei, Xiaokun & Ruan, Qingsong & Lv, Dayong, 2023. "Effect of high-speed rail on entrepreneurial activities: Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    7. Gao, Yanyan & Zheng, Jianghuai, 2020. "The impact of high-speed rail on innovation: An empirical test of the companion innovation hypothesis of transportation improvement with China’s manufacturing firms," World Development, Elsevier, vol. 127(C).
    8. Dong, Lei & Du, Rui & Kahn, Matthew & Ratti, Carlo & Zheng, Siqi, 2021. "“Ghost cities” versus boom towns: Do China's high-speed rail new towns thrive?," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    9. Yan, Linnan & Tu, Menger & Chagas, André L.S. & Tai, Lufeng, 2022. "The impact of high-speed railway on labor spatial misallocation—Based on spatial difference-in-differences analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 82-97.
    10. Linnan Yan & Menger Tu & Andre Luis Squarize Chagas & Lufeng Tai, 2022. "The Impact of High-Speed Rail on Labor Spatial Misallocation– Based on Spatial Difference-in-Differences Analysis," Working Papers, Department of Economics 2022_19, University of São Paulo (FEA-USP).
    11. Luisa Dörr & Stefanie Gäbler, 2020. "Does Highway Accessibility Influence Local Tax Factors? Evidence from German Municipalities," ifo Working Paper Series 321, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    12. Liaoliao Duan & Dongxiao Niu & Weizeng Sun & Siqi Zheng, 2021. "Transportation infrastructure and capital mobility: evidence from China’s high-speed railways," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 67(3), pages 617-648, December.
    13. Yu Chen & Yuandi Wang & Shan Chen, 2021. "Are Chinese Executives Rewarded or Penalized by the Operation of High-Speed Railways?," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    14. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    15. Jin, Mengjie & Lin, Kun-Chin & Shi, Wenming & Lee, Paul T.W. & Li, Kevin X., 2020. "Impacts of high-speed railways on economic growth and disparity in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 158-171.
    16. Chen, Zhenhua, 2023. "Socioeconomic Impacts of high-speed rail: A bibliometric analysis," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    17. Liu, Jingyang & Yang, Haoran, 2023. "Income allocation and distribution along with high-speed rail development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    18. Zheng, Longfei & Long, Fenjie & Chang, Zheng & Ye, Jingsong, 2019. "Ghost town or city of hope? The spatial spillover effects of high-speed railway stations in China," Transport Policy, Elsevier, vol. 81(C), pages 230-241.
    19. Yu, Lamont Bo & Tran, Trang My & Lee, Wang-Sheng, 2023. "Bridging the gap: Assessing the effects of railway infrastructure investments in Northwest China," China Economic Review, Elsevier, vol. 82(C).
    20. Long, Fenjie & Zheng, Longfei & Song, Zhida, 2018. "High-speed rail and urban expansion: An empirical study using a time series of nighttime light satellite data in China," Journal of Transport Geography, Elsevier, vol. 72(C), pages 106-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:sagope:v:13:y:2023:i:4:p:21582440231219351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.