IDEAS home Printed from https://ideas.repec.org/a/eee/joreco/v80y2024ics0969698924001942.html
   My bibliography  Save this article

Gaining insights for service improvement through unstructured text from online reviews

Author

Listed:
  • Zhang, Chenxi
  • Xu, Zeshui

Abstract

This paper aims to address the challenges of dealing with information redundancy in the context of service quality improvement by proposing an innovative online review-based service evaluation method. The proposed method identifies key service attributes that significantly influence consumer satisfaction and assist service providers in prioritizing service improvement. Specifically, this paper presents four identification dimensions and corresponding indicators of service attributes, followed by the application of Proportional Marginal Variance Decomposition (PMVD) method to determine the key service attributes related to consumer satisfaction. Taking 96,322 online reviews of 1398 hotels across four types in Beijing as the empirical validation, this paper highlights the noteworthy discrepancies in key service attributes across different hotel types and reveals the significant dimensions associated with these key service attributes. Furthermore, the calculated PMVD scores serve as valuable references for service managers in determining the ultimate improvement priorities. Overall, our findings emphasize the importance of identifying key service attribute through online review opinion mining, which help avoid wasting resources on service attributes that are repeatedly mentioned in online reviews but are not actually related to consumer satisfaction. The proposed method offers a comprehensive and effective measurement of service quality from various perspectives, providing practical insights for service providers seeking to enhance their performance.

Suggested Citation

  • Zhang, Chenxi & Xu, Zeshui, 2024. "Gaining insights for service improvement through unstructured text from online reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 80(C).
  • Handle: RePEc:eee:joreco:v:80:y:2024:i:c:s0969698924001942
    DOI: 10.1016/j.jretconser.2024.103898
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969698924001942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jretconser.2024.103898?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Wangyan & Chen, Yuangao & Yang, Shuiqing & Zhou, Shasha & Jiang, Hui & Wei, June, 2023. "Personalized managerial response and negative inconsistent review helpfulness: The mediating effect of perceived response helpfulness," Journal of Retailing and Consumer Services, Elsevier, vol. 74(C).
    2. Zhai, Mengfan & Wang, Xinyue & Zhao, Xijie, 2024. "The importance of online customer reviews characteristics on remanufactured product sales: Evidence from the mobile phone market on Amazon.com," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    3. Yang Liu & Jian-Wu Bi & Zhi-Ping Fan, 2017. "A Method for Ranking Products Through Online Reviews Based on Sentiment Classification and Interval-Valued Intuitionistic Fuzzy TOPSIS," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(06), pages 1497-1522, November.
    4. Liu, Zhiwei & Park, Sangwon, 2015. "What makes a useful online review? Implication for travel product websites," Tourism Management, Elsevier, vol. 47(C), pages 140-151.
    5. Song, Yongming & Li, Guangxu & Li, Tie & Li, Yanhong, 2021. "A purchase decision support model considering consumer personalization about aspirations and risk attitudes," Journal of Retailing and Consumer Services, Elsevier, vol. 63(C).
    6. Wang, Zheng & Wang, Lun & Ji, Ying & Zuo, Lulu & Qu, Shaojian, 2022. "A novel data-driven weighted sentiment analysis based on information entropy for perceived satisfaction," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
    7. Jian-Wu Bi & Yang Liu & Zhi-Ping Fan & Erik Cambria, 2019. "Modelling customer satisfaction from online reviews using ensemble neural network and effect-based Kano model," International Journal of Production Research, Taylor & Francis Journals, vol. 57(22), pages 7068-7088, November.
    8. Jin Zhang & Cong Wang & Guoqing Chen, 2021. "A Review Selection Method for Finding an Informative Subset from Online Reviews," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 280-299, January.
    9. Navid Aghakhani & Onook Oh & Dawn G. Gregg & Jahangir Karimi, 2021. "Online Review Consistency Matters: An Elaboration Likelihood Model Perspective," Information Systems Frontiers, Springer, vol. 23(5), pages 1287-1301, September.
    10. Martí Bigorra, Anna & Isaksson, Ove & Karlberg, Magnus, 2019. "Aspect-based Kano categorization," International Journal of Information Management, Elsevier, vol. 46(C), pages 163-172.
    11. Ismagilova, Elvira & Dwivedi, Yogesh K. & Slade, Emma, 2020. "Perceived helpfulness of eWOM: Emotions, fairness and rationality," Journal of Retailing and Consumer Services, Elsevier, vol. 53(C).
    12. Kong, Juan & Lou, Chen, 2023. "Do cultural orientations moderate the effect of online review features on review helpfulness? A case study of online movie reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    13. Pan, Yue & Zhang, Jason Q., 2011. "Born Unequal: A Study of the Helpfulness of User-Generated Product Reviews," Journal of Retailing, Elsevier, vol. 87(4), pages 598-612.
    14. Guo, Yue & Barnes, Stuart J. & Jia, Qiong, 2017. "Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation," Tourism Management, Elsevier, vol. 59(C), pages 467-483.
    15. Ahani, Ali & Nilashi, Mehrbakhsh & Yadegaridehkordi, Elaheh & Sanzogni, Louis & Tarik, A. Rashid & Knox, Kathy & Samad, Sarminah & Ibrahim, Othman, 2019. "Revealing customers’ satisfaction and preferences through online review analysis: The case of Canary Islands hotels," Journal of Retailing and Consumer Services, Elsevier, vol. 51(C), pages 331-343.
    16. Tian, Wei & Liu, Yunliang & Heo, Yeonsook & Yan, Da & Li, Zhanyong & An, Jingjing & Yang, Song, 2016. "Relative importance of factors influencing building energy in urban environment," Energy, Elsevier, vol. 111(C), pages 237-250.
    17. Park, Sangwon & Nicolau, Juan L., 2015. "Asymmetric effects of online consumer reviews," Annals of Tourism Research, Elsevier, vol. 50(C), pages 67-83.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moradi, Masoud & Dass, Mayukh & Kumar, Piyush, 2023. "Differential effects of analytical versus emotional rhetorical style on review helpfulness," Journal of Business Research, Elsevier, vol. 154(C).
    2. Srikanth Parameswaran & Pubali Mukherjee & Rohit Valecha, 2023. "I Like My Anonymity: An Empirical Investigation of the Effect of Multidimensional Review Text and Role Anonymity on Helpfulness of Employer Reviews," Information Systems Frontiers, Springer, vol. 25(2), pages 853-870, April.
    3. Kong, Juan & Lou, Chen, 2023. "Do cultural orientations moderate the effect of online review features on review helpfulness? A case study of online movie reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    4. Wen-Kuo Chen & Dalianus Riantama & Long-Sheng Chen, 2020. "Using a Text Mining Approach to Hear Voices of Customers from Social Media toward the Fast-Food Restaurant Industry," Sustainability, MDPI, vol. 13(1), pages 1-17, December.
    5. Zibarzani, Masoumeh & Abumalloh, Rabab Ali & Nilashi, Mehrbakhsh & Samad, Sarminah & Alghamdi, O.A. & Nayer, Fatima Khan & Ismail, Muhammed Yousoof & Mohd, Saidatulakmal & Mohammed Akib, Noor Adelyna, 2022. "Customer satisfaction with Restaurants Service Quality during COVID-19 outbreak: A two-stage methodology," Technology in Society, Elsevier, vol. 70(C).
    6. Yi Luo & Xiaowei Xu, 2019. "Predicting the Helpfulness of Online Restaurant Reviews Using Different Machine Learning Algorithms: A Case Study of Yelp," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    7. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type," Grenoble Ecole de Management (Post-Print) halshs-01923243, HAL.
    8. Sunyoung Hlee & Hanna Lee & Chulmo Koo, 2018. "Hospitality and Tourism Online Review Research: A Systematic Analysis and Heuristic-Systematic Model," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    9. Yani Wang & Jun Wang & Tang Yao, 2019. "What makes a helpful online review? A meta-analysis of review characteristics," Electronic Commerce Research, Springer, vol. 19(2), pages 257-284, June.
    10. Zajadacz Alina & Minkwitz Aleksandra, 2020. "Using Social Media Data to Plan for Tourism," Quaestiones Geographicae, Sciendo, vol. 39(3), pages 125-138, September.
    11. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type," Post-Print halshs-01923243, HAL.
    12. Zheng, Lili, 2021. "The classification of online consumer reviews: A systematic literature review and integrative framework," Journal of Business Research, Elsevier, vol. 135(C), pages 226-251.
    13. Rongqin Liu & Yun Zhang & Chuan Luo & Shangyu Tan & Yunqu Gong, 2024. "Review content type and hotel review helpfulness: direct and moderating effects," Information Technology and Management, Springer, vol. 25(4), pages 383-406, December.
    14. Román, Sergio & Riquelme, Isabel P. & Iacobucci, Dawn, 2024. "Antecedents and consequences of perceived helpfulness of extremely positive and exaggerated reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 80(C).
    15. Hu, Ya-Han & Chen, Kuanchin, 2016. "Predicting hotel review helpfulness: The impact of review visibility, and interaction between hotel stars and review ratings," International Journal of Information Management, Elsevier, vol. 36(6), pages 929-944.
    16. Wang, Binni & Wang, Pong & Tu, Yiliu, 2021. "Customer satisfaction service match and service quality-based blockchain cloud manufacturing," International Journal of Production Economics, Elsevier, vol. 240(C).
    17. Duan, Yongrui & Liu, Tonghui & Mao, Zhixin, 2022. "How online reviews and coupons affect sales and pricing: An empirical study based on e-commerce platform," Journal of Retailing and Consumer Services, Elsevier, vol. 65(C).
    18. Raoofpanah, Iman & Zamudio, César & Groening, Christopher, 2023. "Review reader segmentation based on the heterogeneous impacts of review and reviewer attributes on review helpfulness: A study involving ZIP code data," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    19. Xiaomo Liu & G. Alan Wang & Weiguo Fan & Zhongju Zhang, 2020. "Finding Useful Solutions in Online Knowledge Communities: A Theory-Driven Design and Multilevel Analysis," Information Systems Research, INFORMS, vol. 31(3), pages 731-752, September.
    20. Gang Ren & Taeho Hong, 2017. "Investigating Online Destination Images Using a Topic-Based Sentiment Analysis Approach," Sustainability, MDPI, vol. 9(10), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:joreco:v:80:y:2024:i:c:s0969698924001942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-retailing-and-consumer-services .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.