IDEAS home Printed from https://ideas.repec.org/a/eee/joreco/v63y2021ics0969698921002940.html
   My bibliography  Save this article

A purchase decision support model considering consumer personalization about aspirations and risk attitudes

Author

Listed:
  • Song, Yongming
  • Li, Guangxu
  • Li, Tie
  • Li, Yanhong

Abstract

Ranking alternative products to help consumers make better purchase choices is a valuable research topic. Most previous decision support models cannot be well applied to heterogeneous consumers. This paper focuses on establishing a personalized interactive model to assist consumers make better buying decisions with less effort. For the alternative products provided by consumers, we collect online reviews and parameter configurations of alternative products and then obtain the fusing evaluative information. As consumers are dominated by bounded rationality, they only provide partially key attribute weights, based on which, we construct an optimizing model to obtain the optimal attribute weights of customers for products. Then, a satisfaction function is proposed by uniting aspiration levels and risk attitudes of consumers and a compensatory decision rules is established to rank and recommend the brands to consumers. Finally, practicability of this study is illustrated with a real car purchase case. Through the case study, it can be seen that the proposed decision support model generates a personalized list of alternatives based on consumer's own utility function about risk attitudes, aspiration levels, and preferences for product attributes, which further confirms that the proposed model can capture the personalized needs of consumers. Theoretical and managerial implications of this model as well as advantages are further illustrated.

Suggested Citation

  • Song, Yongming & Li, Guangxu & Li, Tie & Li, Yanhong, 2021. "A purchase decision support model considering consumer personalization about aspirations and risk attitudes," Journal of Retailing and Consumer Services, Elsevier, vol. 63(C).
  • Handle: RePEc:eee:joreco:v:63:y:2021:i:c:s0969698921002940
    DOI: 10.1016/j.jretconser.2021.102728
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969698921002940
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jretconser.2021.102728?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tarnanidis, Theodore & Owusu-Frimpong, Nana & Nwankwo, Sonny & Omar, Maktoba, 2015. "Why we buy? Modeling consumer selection of referents," Journal of Retailing and Consumer Services, Elsevier, vol. 22(C), pages 24-36.
    2. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
    3. Fernandes, Semila & Venkatesh, V.G. & Panda, Rajesh & Shi, Yangyan, 2021. "Measurement of factors influencing online shopper buying decisions: A scale development and validation," Journal of Retailing and Consumer Services, Elsevier, vol. 59(C).
    4. Ilia Tsetlin & Robert L. Winkler, 2007. "Decision Making with Multiattribute Performance Targets: The Impact of Changes in Performance and Target Distributions," Operations Research, INFORMS, vol. 55(2), pages 226-233, April.
    5. Xinxin Li & Lorin M. Hitt, 2008. "Self-Selection and Information Role of Online Product Reviews," Information Systems Research, INFORMS, vol. 19(4), pages 456-474, December.
    6. Engler, Tobias H. & Winter, Patrick & Schulz, Michael, 2015. "Understanding online product ratings: A customer satisfaction model," Journal of Retailing and Consumer Services, Elsevier, vol. 27(C), pages 113-120.
    7. Ravi Bapna & Akhmed Umyarov, 2015. "Do Your Online Friends Make You Pay? A Randomized Field Experiment on Peer Influence in Online Social Networks," Management Science, INFORMS, vol. 61(8), pages 1902-1920, August.
    8. Rosen, Sherwin, 1974. "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition," Journal of Political Economy, University of Chicago Press, vol. 82(1), pages 34-55, Jan.-Feb..
    9. Dellarocas, Chrysanthos, 2003. "The Digitization of Word-of-mouth: Promise and Challenges of Online Feedback Mechanisms," Working papers 4296-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    10. Tsan-Ming Choi & T. C. E. Cheng & Xiande Zhao & Hing Kai Chan & Xiaojun Wang & Ewelina Lacka & Min Zhang, 2016. "A Mixed-Method Approach to Extracting the Value of Social Media Data," Production and Operations Management, Production and Operations Management Society, vol. 25(3), pages 568-583, March.
    11. Zhang, Hong-yu & Ji, Pu & Wang, Jian-qiang & Chen, Xiao-hong, 2017. "A novel decision support model for satisfactory restaurants utilizing social information: A case study of TripAdvisor.com," Tourism Management, Elsevier, vol. 59(C), pages 281-297.
    12. David R. Bell & James M. Lattin, 2000. "Looking for Loss Aversion in Scanner Panel Data: The Confounding Effect of Price Response Heterogeneity," Marketing Science, INFORMS, vol. 19(2), pages 185-200, May.
    13. Jyrki Wallenius & James S. Dyer & Peter C. Fishburn & Ralph E. Steuer & Stanley Zionts & Kalyanmoy Deb, 2008. "Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead," Management Science, INFORMS, vol. 54(7), pages 1336-1349, July.
    14. Ecer, Fatih, 2021. "A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Zhi-Ping Fan & Xiao Zhang & Yan-Ru Zhao & Fa-Dong Chen, 2013. "Multiple Attribute Decision Making With Multiple Formats Of Attribute Aspirations: A Method Based On Prospect Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 12(04), pages 711-727.
    16. Feng, Bo & Lai, Fujun, 2014. "Multi-attribute group decision making with aspirations: A case study," Omega, Elsevier, vol. 44(C), pages 136-147.
    17. Chrysanthos Dellarocas, 2003. "The Digitization of Word of Mouth: Promise and Challenges of Online Feedback Mechanisms," Management Science, INFORMS, vol. 49(10), pages 1407-1424, October.
    18. Kim, Soung Hie & Ahn, Byeong Seok, 1999. "Interactive group decision making procedure under incomplete information," European Journal of Operational Research, Elsevier, vol. 116(3), pages 498-507, August.
    19. Filieri, Raffaele, 2015. "What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM," Journal of Business Research, Elsevier, vol. 68(6), pages 1261-1270.
    20. Tseng, Aihua, 2017. "Why do online tourists need sellers' ratings? Exploration of the factors affecting regretful tourist e-satisfaction," Tourism Management, Elsevier, vol. 59(C), pages 413-424.
    21. James S. Dyer & Peter C. Fishburn & Ralph E. Steuer & Jyrki Wallenius & Stanley Zionts, 1992. "Multiple Criteria Decision Making, Multiattribute Utility Theory: The Next Ten Years," Management Science, INFORMS, vol. 38(5), pages 645-654, May.
    22. Ahani, Ali & Nilashi, Mehrbakhsh & Yadegaridehkordi, Elaheh & Sanzogni, Louis & Tarik, A. Rashid & Knox, Kathy & Samad, Sarminah & Ibrahim, Othman, 2019. "Revealing customers’ satisfaction and preferences through online review analysis: The case of Canary Islands hotels," Journal of Retailing and Consumer Services, Elsevier, vol. 51(C), pages 331-343.
    23. Butler, John C. & Dyer, James S. & Jia, Jianmin & Tomak, Kerem, 2008. "Enabling e-transactions with multi-attribute preference models," European Journal of Operational Research, Elsevier, vol. 186(2), pages 748-765, April.
    24. Hsieh, Sara H. & Lee, Crystal T. & Tseng, Timmy H., 2021. "Branded app atmospherics: Examining the effect of pleasure–arousal–dominance in brand relationship building," Journal of Retailing and Consumer Services, Elsevier, vol. 60(C).
    25. Stephen J. Mezias & Ya-Ru Chen & Patrice R. Murphy, 2002. "Aspiration-Level Adaptation in an American Financial Services Organization: A Field Study," Management Science, INFORMS, vol. 48(10), pages 1285-1300, October.
    26. Chen, Chien-fei & Zarazua de Rubens, Gerardo & Noel, Lance & Kester, Johannes & Sovacool, Benjamin K., 2020. "Assessing the socio-demographic, technical, economic and behavioral factors of Nordic electric vehicle adoption and the influence of vehicle-to-grid preferences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    27. Elke U. Weber & Christopher Hsee, 1998. "Cross-Cultural Differences in Risk Perception, but Cross-Cultural Similarities in Attitudes Towards Perceived Risk," Management Science, INFORMS, vol. 44(9), pages 1205-1217, September.
    28. Yongming Song & Guangxu Li, 2019. "A large-scale group decision-making with incomplete multi-granular probabilistic linguistic term sets and its application in sustainable supplier selection," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(5), pages 827-841, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hernández-Tamurejo, Álvaro & Saiz-Sepúlveda, Álvaro & Lacárcel, Francisco Javier S., 2024. "Are urban mobility policies favoring the purchase of new vehicles?," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    2. Sumin Yu & Xiaoting Zhang & Zhijiao Du & Yanyan Chen, 2023. "A New Multi-Attribute Decision Making Method for Overvalued Star Ratings Adjustment and Its Application in New Energy Vehicle Selection," Mathematics, MDPI, vol. 11(9), pages 1-32, April.
    3. Zhao, Meng & Xu, Chang & Zhao, Wenxian & Lin, Mingwei, 2023. "New energy vehicle online selection method considering attribute compensation relationship and aspiration strength," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    4. Song, Yongming & Li, Yanhong & Zhu, Hongli & Li, Guangxu, 2023. "A decision support model for buying battery electric vehicles considering consumer learning and psychological behavior," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    5. Lambillotte, Laetitia & Magrofuoco, Nathan & Poncin, Ingrid & Vanderdonckt, Jean, 2022. "Enhancing playful customer experience with personalization," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
    6. Li, Yanhong & Kou, Gang & Li, Guangxu & Peng, Yi, 2022. "Consensus reaching process in large-scale group decision making based on bounded confidence and social network," European Journal of Operational Research, Elsevier, vol. 303(2), pages 790-802.
    7. Alrawad, Mahmaod & Lutfi, Abdalwali & Alyatama, Sundus & Al Khattab, Adel & Alsoboa, Sliman S. & Almaiah, Mohammed Amin & Ramadan, Mujtaba Hashim & Arafa, Hussin Mostafa & Ahmed, Nazar Ali & Alsyouf, , 2023. "Assessing customers perception of online shopping risks: A structural equation modeling–based multigroup analysis," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    2. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    3. Guha Majumder, Madhumita & Dutta Gupta, Sangita & Paul, Justin, 2022. "Perceived usefulness of online customer reviews: A review mining approach using machine learning & exploratory data analysis," Journal of Business Research, Elsevier, vol. 150(C), pages 147-164.
    4. Hyunwoo Hwangbo & Jonghyuk Kim, 2019. "A Text Mining Approach for Sustainable Performance in the Film Industry," Sustainability, MDPI, vol. 11(11), pages 1-16, June.
    5. Kim, Da Yeon & Kim, Sang Yong, 2022. "The impact of customer-generated evaluation information on sales in online platform-based markets," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
    6. Marchand, André & Hennig-Thurau, Thorsten & Wiertz, Caroline, 2017. "Not all digital word of mouth is created equal: Understanding the respective impact of consumer reviews and microblogs on new product success," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 336-354.
    7. Floyd, Kristopher & Freling, Ryan & Alhoqail, Saad & Cho, Hyun Young & Freling, Traci, 2014. "How Online Product Reviews Affect Retail Sales: A Meta-analysis," Journal of Retailing, Elsevier, vol. 90(2), pages 217-232.
    8. Christoph Schneider & Markus Weinmann & Peter N.C. Mohr & Jan vom Brocke, 2021. "When the Stars Shine Too Bright: The Influence of Multidimensional Ratings on Online Consumer Ratings," Management Science, INFORMS, vol. 67(6), pages 3871-3898, June.
    9. Juan Feng & Xin Li & Xiaoquan (Michael) Zhang, 2019. "Online Product Reviews-Triggered Dynamic Pricing: Theory and Evidence," Information Systems Research, INFORMS, vol. 30(4), pages 1107-1123, December.
    10. Jürgen Neumann & Dominik Gutt & Dennis Kundisch, 2018. "The Traveling Reviewer Problem – Exploring the Relationship between Offline Locations and Online Rating Behavior," Working Papers Dissertations 44, Paderborn University, Faculty of Business Administration and Economics.
    11. King, Robert Allen & Racherla, Pradeep & Bush, Victoria D., 2014. "What We Know and Don't Know About Online Word-of-Mouth: A Review and Synthesis of the Literature," Journal of Interactive Marketing, Elsevier, vol. 28(3), pages 167-183.
    12. Peiyu Chen & Lorin M. Hitt & Yili Hong & Shinyi Wu, 2021. "Measuring Product Type and Purchase Uncertainty with Online Product Ratings: A Theoretical Model and Empirical Application," Information Systems Research, INFORMS, vol. 32(4), pages 1470-1489, December.
    13. Daniel Kaimann & Joe Cox, 2014. "The Interaction of Signals: A Fuzzy set Analysis of the Video Game Industry," Working Papers Dissertations 13, Paderborn University, Faculty of Business Administration and Economics.
    14. Akbari, Morteza & Foroudi, Pantea & Zaman Fashami, Rahime & Mahavarpour, Nasrin & Khodayari, Maryam, 2022. "Let us talk about something: The evolution of e-WOM from the past to the future," Journal of Business Research, Elsevier, vol. 149(C), pages 663-689.
    15. Daniel Kaimann & Joe Cox, 2014. "The Interaction of Signals: A Fuzzy set Analysis of the Video Game Industry," Working Papers CIE 84, Paderborn University, CIE Center for International Economics.
    16. Tao Lu & May Yuan & Chong (Alex) Wang & Xiaoquan (Michael) Zhang, 2022. "Histogram Distortion Bias in Consumer Choices," Management Science, INFORMS, vol. 68(12), pages 8963-8978, December.
    17. Jorge Mejia & Shawn Mankad & Anandasivam Gopal, 2019. "A for Effort? Using the Crowd to Identify Moral Hazard in New York City Restaurant Hygiene Inspections," Information Systems Research, INFORMS, vol. 30(4), pages 1363-1386, December.
    18. Nachiketa Sahoo & Chrysanthos Dellarocas & Shuba Srinivasan, 2018. "The Impact of Online Product Reviews on Product Returns," Information Systems Research, INFORMS, vol. 29(3), pages 723-738, September.
    19. Heeseung Andrew Lee & Angela Aerry Choi & Tianshu Sun & Wonseok Oh, 2021. "Reviewing Before Reading? An Empirical Investigation of Book-Consumption Patterns and Their Effects on Reviews and Sales," Information Systems Research, INFORMS, vol. 32(4), pages 1368-1389, December.
    20. Bin Gu & Jaehong Park & Prabhudev Konana, 2012. "Research Note ---The Impact of External Word-of-Mouth Sources on Retailer Sales of High-Involvement Products," Information Systems Research, INFORMS, vol. 23(1), pages 182-196, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:joreco:v:63:y:2021:i:c:s0969698921002940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-retailing-and-consumer-services .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.