IDEAS home Printed from https://ideas.repec.org/a/wsi/ijitdm/v16y2017i06ns021962201750033x.html
   My bibliography  Save this article

A Method for Ranking Products Through Online Reviews Based on Sentiment Classification and Interval-Valued Intuitionistic Fuzzy TOPSIS

Author

Listed:
  • Yang Liu

    (Department of Information Management and Decision Sciences, School of Business Administration, Northeastern University, Shenyang 110167, P. R. China)

  • Jian-Wu Bi

    (Department of Information Management and Decision Sciences, School of Business Administration, Northeastern University, Shenyang 110167, P. R. China)

  • Zhi-Ping Fan

    (Department of Information Management and Decision Sciences, School of Business Administration, Northeastern University, Shenyang 110167, P. R. China†State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, P. R. China)

Abstract

Studies have shown that online product reviews significantly affect consumer purchase decisions. However, it is difficult for the consumer to read online product reviews one by one because the number of online reviews is very large. Thus, to facilitate consumer purchase decisions, how to rank products through online reviews is a valuable research topic. This paper proposes a method for ranking products through online reviews based on sentiment classification and the interval-valued intuitionistic fuzzy Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). The method consists of two parts: (1) identifying sentiment orientations of the online reviews based on sentiment classification and (2) ranking alternative products based on interval-valued intuitionistic fuzzy TOPSIS. In the first part, the online reviews of the alternative products concerning multiple attributes are preprocessed, and an algorithm based on support vector machine and one-versus-one strategy is developed for classifying the sentiment orientations of online reviews into three categories: positive, neutral, and negative. In the second part, based on the percentages of the online reviews with different sentiment orientations and the numbers of online reviews of different products crawled from the website, an interval-valued intuitionistic fuzzy number is constructed to represent the performance of an alternative product with respect to the product attribute. Additionally, the interval-valued intuitionistic fuzzy TOPSIS method is employed to determine a ranking of the alternative products. Finally, a case analysis is provided to illustrate the application of the proposed method.

Suggested Citation

  • Yang Liu & Jian-Wu Bi & Zhi-Ping Fan, 2017. "A Method for Ranking Products Through Online Reviews Based on Sentiment Classification and Interval-Valued Intuitionistic Fuzzy TOPSIS," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(06), pages 1497-1522, November.
  • Handle: RePEc:wsi:ijitdm:v:16:y:2017:i:06:n:s021962201750033x
    DOI: 10.1142/S021962201750033X
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S021962201750033X
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S021962201750033X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeshui Xu & Hui Hu, 2010. "Projection Models For Intuitionistic Fuzzy Multiple Attribute Decision Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 267-280.
    2. Kou, Gang & Lin, Changsheng, 2014. "A cosine maximization method for the priority vector derivation in AHP," European Journal of Operational Research, Elsevier, vol. 235(1), pages 225-232.
    3. Yijun Li & Qiang Ye & Ziqiong Zhang & Tienan Wang, 2011. "Snippet-Based Unsupervised Approach For Sentiment Classification Of Chinese Online Reviews," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 10(06), pages 1097-1110.
    4. Gang Kou & Yanqun Lu & Yi Peng & Yong Shi, 2012. "Evaluation Of Classification Algorithms Using Mcdm And Rank Correlation," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 197-225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng Zhao & Xinyuan Shen & Huchang Liao & Mingyao Cai, 2022. "Selecting products through text reviews: An MCDM method incorporating personalized heuristic judgments in the prospect theory," Fuzzy Optimization and Decision Making, Springer, vol. 21(1), pages 21-44, March.
    2. Ayat Zaki Ahmed & Manuel Rodríguez-Díaz, 2020. "Significant Labels in Sentiment Analysis of Online Customer Reviews of Airlines," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    3. Heidary Dahooie, Jalil & Raafat, Romina & Qorbani, Ali Reza & Daim, Tugrul, 2021. "An intuitionistic fuzzy data-driven product ranking model using sentiment analysis and multi-criteria decision-making," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    4. Melda Kokoç & Süleyman Ersöz, 2021. "A literature review of interval-valued intuitionistic fuzzy multi-criteria decision-making methodologies," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(4), pages 89-116.
    5. Paola Zola & Paulo Cortez & Costantino Ragno & Eugenio Brentari, 2019. "Social Media Cross-Source and Cross-Domain Sentiment Classification," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1469-1499, September.
    6. Jerzy Michnik & Artur Grabowski, 2020. "Modeling Uncertainty in the Wings Method Using Interval Arithmetic," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 221-240, January.
    7. Lifeng He & Dongmei Han & Xiaohang Zhou & Zheng Qu, 2020. "The Voice of Drug Consumers: Online Textual Review Analysis Using Structural Topic Model," IJERPH, MDPI, vol. 17(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunqiao Tan & Xiaohong Chen, 2016. "Generalized Archimedean Intuitionistic Fuzzy Averaging Aggregation Operators and their Application to Multicriteria Decision-Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 311-352, March.
    2. Shouzhen Zeng & Jianping Chen & Xingsen Li, 2016. "A Hybrid Method for Pythagorean Fuzzy Multiple-Criteria Decision Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 403-422, March.
    3. Peide Liu & Lili Zhang & Xi Liu & Peng Wang, 2016. "Multi-Valued Neutrosophic Number Bonferroni Mean Operators with their Applications in Multiple Attribute Group Decision Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(05), pages 1181-1210, September.
    4. Xunjie Gou & Zeshui Xu & Huchang Liao, 2019. "Hesitant Fuzzy Linguistic Possibility Degree-Based Linear Assignment Method for Multiple Criteria Decision-Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 35-63, January.
    5. Viral Gupta & P. K. Kapur & Deepak Kumar, 2019. "Prioritizing and Optimizing Disaster Recovery Solution using Analytic Network Process and Multi Attribute Utility Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 171-207, January.
    6. Qian Qian & Yang Yang & Zong-Fang Zhou, 2019. "Research on Trade Credit Spreading and Credit Risk within the Supply Chain," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 389-411, January.
    7. Emre Çalişkan & Erdem Aksakal & Saliha Çetinyokuş & Tahsin Çetinyokuş, 2019. "Hybrid Use of Likert Scale-Based AHP and PROMETHEE Methods for Hazard Analysis and Consequence Modeling (HACM) Software Selection," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1689-1715, September.
    8. Peide Liu & Peng Wang, 2017. "Some Improved Linguistic Intuitionistic Fuzzy Aggregation Operators and Their Applications to Multiple-Attribute Decision Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 817-850, May.
    9. Thomas L. Saaty & Daji Ergu, 2015. "When is a Decision-Making Method Trustworthy? Criteria for Evaluating Multi-Criteria Decision-Making Methods," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1171-1187, November.
    10. Ardalan Bafahm & Minghe Sun, 2019. "Some Conflicting Results in the Analytic Hierarchy Process," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 465-486, March.
    11. Ayfer Basar & Özgür Kabak & Y. Ilker Topcu, 2017. "A Decision Support Methodology for Locating Bank Branches: A Case Study in Turkey," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 59-86, January.
    12. Mohammad Amirkhan & Hosein Didehkhani & Kaveh Khalili-Damghani & Ashkan Hafezalkotob, 2018. "Measuring Performance of a Three-Stage Network Structure Using Data Envelopment Analysis and Nash Bargaining Game: A Supply Chain Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1429-1467, September.
    13. Ivanoe De Falco & Umberto Scafuri & Ernesto Tarantino, 2016. "Optimizing Personalized Touristic Itineraries by a Multiobjective Evolutionary Algorithm," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1269-1312, November.
    14. Yensen Ni & Min-Yuh Day & Paoyu Huang, 2020. "Trading stocks following sharp movements in the USDX, GBP/USD, and USD/CNY," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-17, December.
    15. Fahrettin Eldemir & Ismail Onden, 2016. "Geographical Information Systems and Multicriteria Decisions Integration Approach for Hospital Location Selection," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(05), pages 975-997, September.
    16. Dong, Qingxing & Cooper, Orrin, 2016. "An orders-of-magnitude AHP supply chain risk assessment framework," International Journal of Production Economics, Elsevier, vol. 182(C), pages 144-156.
    17. Hua Zhu & Jianbin Zhao & Yang Xu & Limin Du, 2016. "Interval-Valued Belief Rule Inference Methodology Based on Evidential Reasoning-IRIMER," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1345-1366, November.
    18. Kun Chen & Gang Kou & J. Michael Tarn & Yan Song, 2015. "Bridging the gap between missing and inconsistent values in eliciting preference from pairwise comparison matrices," Annals of Operations Research, Springer, vol. 235(1), pages 155-175, December.
    19. Kuang-Hua Hu & Wei Jianguo & Gwo-Hshiung Tzeng, 2017. "Risk Factor Assessment Improvement for China’s Cloud Computing Auditing Using a New Hybrid MADM Model," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 737-777, May.
    20. Ernesto Tarantino & Ivanoe De Falco & Umberto Scafuri, 2019. "A mobile personalized tourist guide and its user evaluation," Information Technology & Tourism, Springer, vol. 21(3), pages 413-455, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijitdm:v:16:y:2017:i:06:n:s021962201750033x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijitdm/ijitdm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.