IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v121y2020ics1364032119308974.html
   My bibliography  Save this article

Assessing the socio-demographic, technical, economic and behavioral factors of Nordic electric vehicle adoption and the influence of vehicle-to-grid preferences

Author

Listed:
  • Chen, Chien-fei
  • Zarazua de Rubens, Gerardo
  • Noel, Lance
  • Kester, Johannes
  • Sovacool, Benjamin K.

Abstract

This study investigates the interconnected influence of socio-demographics, behavioral, economic, and technical factors associated with electric vehicle (EV) adoption interest and the influence of vehicle-to-grid mobility on preferences. Using hierarchical regression analysis, we examine the impacts of six dimensions relating to socio-demographic, technical, economic, and behavioral factors in a survey (n = 4885) across Denmark, Finland, Iceland, Norway, and Sweden. Our results show that younger males, with higher income, a higher number of children, and who had experiences with EVs, and generally hold sustainability values are positively related to potential EV adoption. Among electric mobility attributes, vehicle-to-grid capability and charging time are determined to be the influential predictors. Adding vehicle-to-grid capability can foster EV adoption in our analysis, considering it can add a revenue stream for EV owners. Individuals continue to use specific knowledge of conventional fuel vehicles when considering EVs and their attributes. Among all of our factors, the fuel economy, financial savings, and environmental value were the strongest predictors. In comparison, the driving range was ranked less critical to former EV owners than to a conventional car and current EV owners. Battery life was ranked more important to conventional fuel vehicle owners than current and former EV owners. Finally, former EV owners considered vehicle-to-grid to be more important than current EV and conventional car owners, implying that vehicle-to-grid could be the marginal incentive that would be the “tipping point.”

Suggested Citation

  • Chen, Chien-fei & Zarazua de Rubens, Gerardo & Noel, Lance & Kester, Johannes & Sovacool, Benjamin K., 2020. "Assessing the socio-demographic, technical, economic and behavioral factors of Nordic electric vehicle adoption and the influence of vehicle-to-grid preferences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
  • Handle: RePEc:eee:rensus:v:121:y:2020:i:c:s1364032119308974
    DOI: 10.1016/j.rser.2019.109692
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119308974
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dargay, Joyce M., 2002. "Determinants of car ownership in rural and urban areas: a pseudo-panel analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(5), pages 351-366, September.
    2. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    3. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    4. Galus, Matthias D. & Zima, Marek & Andersson, Göran, 2010. "On integration of plug-in hybrid electric vehicles into existing power system structures," Energy Policy, Elsevier, vol. 38(11), pages 6736-6745, November.
    5. Yang, Xiaofang & Jin, Wen & Jiang, Hai & Xie, Qianyan & Shen, Wei & Han, Weijian, 2017. "Car ownership policies in China: Preferences of residents and influence on the choice of electric cars," Transport Policy, Elsevier, vol. 58(C), pages 62-71.
    6. Wendy Attaya Boland & Merrie Brucks & Jesper H. Nielsen, 2012. "The Attribute Carryover Effect: What the "Runner-Up" Option Tells Us about Consumer Choice Processes," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 38(5), pages 872-885.
    7. Krupa, Joseph S. & Rizzo, Donna M. & Eppstein, Margaret J. & Brad Lanute, D. & Gaalema, Diann E. & Lakkaraju, Kiran & Warrender, Christina E., 2014. "Analysis of a consumer survey on plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 14-31.
    8. Kahn, Matthew E., 2007. "Do greens drive Hummers or hybrids? Environmental ideology as a determinant of consumer choice," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 129-145, September.
    9. Khan, Mobashwir & Kockelman, Kara M., 2012. "Predicting the market potential of plug-in electric vehicles using multiday GPS data," Energy Policy, Elsevier, vol. 46(C), pages 225-233.
    10. Franke, Thomas & Krems, Josef F., 2013. "What drives range preferences in electric vehicle users?," Transport Policy, Elsevier, vol. 30(C), pages 56-62.
    11. Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Promoting Vehicle to Grid (V2G) in the Nordic region: Expert advice on policy mechanisms for accelerated diffusion," Energy Policy, Elsevier, vol. 116(C), pages 422-432.
    12. Büchs, Milena & Schnepf, Sylke V., 2013. "Who emits most? Associations between socio-economic factors and UK households' home energy, transport, indirect and total CO2 emissions," Ecological Economics, Elsevier, vol. 90(C), pages 114-123.
    13. Wolf, Angelika & Seebauer, Sebastian, 2014. "Technology adoption of electric bicycles: A survey among early adopters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 196-211.
    14. Ensslen, Axel & Paetz, Alexandra-Gwyn & Babrowski, Sonja & Jochem, Patrick & Fichtner, Wolf, 2015. "On the road to an electric mobility mass market - How can early adopters be characterized?," Working Paper Series in Production and Energy 8, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    15. Abenoza, Roberto F. & Cats, Oded & Susilo, Yusak O., 2017. "Travel satisfaction with public transport: Determinants, user classes, regional disparities and their evolution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 64-84.
    16. Tang, Xiaolin & Zhang, Dejiu & Liu, Teng & Khajepour, Amir & Yu, Haisheng & Wang, Hong, 2019. "Research on the energy control of a dual-motor hybrid vehicle during engine start-stop process," Energy, Elsevier, vol. 166(C), pages 1181-1193.
    17. Pasaoglu, G. & Fiorello, D. & Martino, A. & Zani, L. & Zubaryeva, A. & Thiel, C., 2014. "Travel patterns and the potential use of electric cars – Results from a direct survey in six European countries," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 51-59.
    18. Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Policy mechanisms to accelerate electric vehicle adoption: A qualitative review from the Nordic region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 719-731.
    19. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    20. Margareta Friman & Lina Larhult & Tommy Gärling, 2013. "An analysis of soft transport policy measures implemented in Sweden to reduce private car use," Transportation, Springer, vol. 40(1), pages 109-129, January.
    21. Noel Melton & Jonn Axsen & Daniel Sperling, 2016. "Moving beyond alternative fuel hype to decarbonize transportation," Nature Energy, Nature, vol. 1(3), pages 1-10, March.
    22. Vassileva, Iana & Campillo, Javier, 2017. "Adoption barriers for electric vehicles: Experiences from early adopters in Sweden," Energy, Elsevier, vol. 120(C), pages 632-641.
    23. Pearre, Nathaniel S. & Ribberink, Hajo, 2019. "Review of research on V2X technologies, strategies, and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 61-70.
    24. Zheng, Yanchong & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jian, Linni, 2019. "Integrating plug-in electric vehicles into power grids: A comprehensive review on power interaction mode, scheduling methodology and mathematical foundation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 424-439.
    25. Hardman, Scott & Shiu, Eric & Steinberger-Wilckens, Robert, 2016. "Comparing high-end and low-end early adopters of battery electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 40-57.
    26. Després, Jacques & Mima, Silvana & Kitous, Alban & Criqui, Patrick & Hadjsaid, Nouredine & Noirot, Isabelle, 2017. "Storage as a flexibility option in power systems with high shares of variable renewable energy sources: a POLES-based analysis," Energy Economics, Elsevier, vol. 64(C), pages 638-650.
    27. She, Zhen-Yu & Qing Sun, & Ma, Jia-Jun & Xie, Bai-Chen, 2017. "What are the barriers to widespread adoption of battery electric vehicles? A survey of public perception in Tianjin, China," Transport Policy, Elsevier, vol. 56(C), pages 29-40.
    28. Schuitema, Geertje & Anable, Jillian & Skippon, Stephen & Kinnear, Neale, 2013. "The role of instrumental, hedonic and symbolic attributes in the intention to adopt electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 39-49.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sovacool, Benjamin K. & Abrahamse, Wokje & Zhang, Long & Ren, Jingzheng, 2019. "Pleasure or profit? Surveying the purchasing intentions of potential electric vehicle adopters in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 69-81.
    2. Zarazua de Rubens, Gerardo, 2019. "Who will buy electric vehicles after early adopters? Using machine learning to identify the electric vehicle mainstream market," Energy, Elsevier, vol. 172(C), pages 243-254.
    3. Priessner, Alfons & Sposato, Robert & Hampl, Nina, 2018. "Predictors of electric vehicle adoption: An analysis of potential electric vehicle drivers in Austria," Energy Policy, Elsevier, vol. 122(C), pages 701-714.
    4. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & de Rubens, Gerardo Zarazua, 2019. "Income, political affiliation, urbanism and geography in stated preferences for electric vehicles (EVs) and vehicle-to-grid (V2G) technologies in Northern Europe," Journal of Transport Geography, Elsevier, vol. 78(C), pages 214-229.
    5. Eunsung Kim & Eunnyeong Heo, 2019. "Key Drivers behind the Adoption of Electric Vehicle in Korea: An Analysis of the Revealed Preferences," Sustainability, MDPI, vol. 11(23), pages 1-15, December.
    6. Madhusudhan Adhikari & Laxman Prasad Ghimire & Yeonbae Kim & Prakash Aryal & Sundar Bahadur Khadka, 2020. "Identification and Analysis of Barriers against Electric Vehicle Use," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    7. Patyal, Vishal Singh & Kumar, Ravi & Kushwah, Shiksha, 2021. "Modeling barriers to the adoption of electric vehicles: An Indian perspective," Energy, Elsevier, vol. 237(C).
    8. Abotalebi, Elnaz & Scott, Darren M. & Ferguson, Mark R., 2019. "Why is electric vehicle uptake low in Atlantic Canada? A comparison to leading adoption provinces," Journal of Transport Geography, Elsevier, vol. 74(C), pages 289-298.
    9. Hardman, Scott & Tal, Gil, 2021. "Discontinuance Among California’s Electric Vehicle Buyers: Why are Some Consumers Abandoning Electric Vehicles?," Institute of Transportation Studies, Working Paper Series qt11n6f4hs, Institute of Transportation Studies, UC Davis.
    10. Mohamed, Moataz & Higgins, Christopher D. & Ferguson, Mark & Réquia, Weeberb J., 2018. "The influence of vehicle body type in shaping behavioural intention to acquire electric vehicles: A multi-group structural equation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 54-72.
    11. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & de Rubens, Gerardo Zarazua, 2019. "Energy Injustice and Nordic Electric Mobility: Inequality, Elitism, and Externalities in the Electrification of Vehicle-to-Grid (V2G) Transport," Ecological Economics, Elsevier, vol. 157(C), pages 205-217.
    12. Hackbarth, André & Madlener, Reinhard, 2018. "Combined Vehicle Type and Fuel Type Choices of Private Households: An Empirical Analysis for Germany," FCN Working Papers 17/2018, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised May 2019.
    13. Wang, Shanyong & Li, Jun & Zhao, Dingtao, 2017. "The impact of policy measures on consumer intention to adopt electric vehicles: Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 14-26.
    14. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    15. Chun Yang & Jui-Che Tu & Qianling Jiang, 2020. "The Influential Factors of Consumers’ Sustainable Consumption: A Case on Electric Vehicles in China," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    16. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Andre L. Carrel & Lee V. White & Christina Gore & Harsh Shah, 2024. "Subscribing to new technology: consumer preferences for short-term ownership of electric vehicles," Transportation, Springer, vol. 51(3), pages 875-909, June.
    18. Goel, Pooja & Kumar, Aalok & Parayitam, Satyanarayana & Luthra, Sunil, 2023. "Understanding transport users' preferences for adopting electric vehicle based mobility for sustainable city: A moderated moderated-mediation model," Journal of Transport Geography, Elsevier, vol. 106(C).
    19. Qian, Xiaodong & Gkritza, Konstantina, 2024. "Spatial and temporal variance in public perception of electric vehicles: A comparative analysis of adoption pioneers and laggards using twitter data," Transport Policy, Elsevier, vol. 149(C), pages 150-162.
    20. Jingnan Zhang & Shichun Xu & Zhengxia He & Chengze Li & Xiaona Meng, 2022. "Factors Influencing Adoption Intention for Electric Vehicles under a Subsidy Deduction: From Different City-Level Perspectives," Sustainability, MDPI, vol. 14(10), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:121:y:2020:i:c:s1364032119308974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.