IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v68y2017icp85-94.html
   My bibliography  Save this article

An integrated strategy for a production planning and warehouse layout problem: Modeling and solution approaches

Author

Listed:
  • Zhang, Guoqing
  • Nishi, Tatsushi
  • Turner, Sarina D.O.
  • Oga, Keisuke
  • Li, Xindan

Abstract

We study a real-world production warehousing case, where the company always faces the challenge to find available space for its products and to manage the items in the warehouse. To resolve the problem, an integrated strategy that combines warehouse layout with the capacitated lot-sizing problem is presented, which have been traditionally treated separately in the existing literature. We develop a mixed integer linear programming model to formulate the integrated optimization problem with the objective of minimizing the total cost of production and warehouse operations. The problem with real data is a large-scale instance that is beyond the capability of optimization solvers. A novel Lagrangian relax-and-fix heuristic approach and its variants are proposed to solve the large-scale problem. The preliminary numerical results from the heuristic approaches are reported.

Suggested Citation

  • Zhang, Guoqing & Nishi, Tatsushi & Turner, Sarina D.O. & Oga, Keisuke & Li, Xindan, 2017. "An integrated strategy for a production planning and warehouse layout problem: Modeling and solution approaches," Omega, Elsevier, vol. 68(C), pages 85-94.
  • Handle: RePEc:eee:jomega:v:68:y:2017:i:c:p:85-94
    DOI: 10.1016/j.omega.2016.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048316303206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2016.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, Powell & Narayanan, Arunachalam & Sahin, Funda, 2009. "Coordinated deterministic dynamic demand lot-sizing problem: A review of models and algorithms," Omega, Elsevier, vol. 37(1), pages 3-15, February.
    2. Yves Pochet & Laurence A. Wolsey, 1991. "Solving Multi-Item Lot-Sizing Problems Using Strong Cutting Planes," Management Science, INFORMS, vol. 37(1), pages 53-67, January.
    3. Pan, Jason Chao-Hsien & Shih, Po-Hsun & Wu, Ming-Hung, 2015. "Order batching in a pick-and-pass warehousing system with group genetic algorithm," Omega, Elsevier, vol. 57(PB), pages 238-248.
    4. Gabriel R. Bitran & Horacio H. Yanasse, 1982. "Computational Complexity of the Capacitated Lot Size Problem," Management Science, INFORMS, vol. 28(10), pages 1174-1186, October.
    5. Liu, X. & Tu, Yl., 2008. "Production planning with limited inventory capacity and allowed stockout," International Journal of Production Economics, Elsevier, vol. 111(1), pages 180-191, January.
    6. Zhang, Guoqing, 2010. "The multi-product newsboy problem with supplier quantity discounts and a budget constraint," European Journal of Operational Research, Elsevier, vol. 206(2), pages 350-360, October.
    7. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    8. Stephen F. Love, 1972. "A Facilities in Series Inventory Model with Nested Schedules," Management Science, INFORMS, vol. 18(5-Part-1), pages 327-338, January.
    9. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    10. Muppani (Muppant), Venkata Reddy & Adil, Gajendra Kumar, 2008. "Efficient formation of storage classes for warehouse storage location assignment: A simulated annealing approach," Omega, Elsevier, vol. 36(4), pages 609-618, August.
    11. Absi, Nabil & Kedad-Sidhoum, Safia, 2008. "The multi-item capacitated lot-sizing problem with setup times and shortage costs," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1351-1374, March.
    12. Xiaolong Guo & Yugang Yu & René B.M. De Koster, 2016. "Impact of required storage space on storage policy performance in a unit-load warehouse," International Journal of Production Research, Taylor & Francis Journals, vol. 54(8), pages 2405-2418, April.
    13. Alvim, Adriana C.F. & Taillard, Éric D., 2009. "POPMUSIC for the point feature label placement problem," European Journal of Operational Research, Elsevier, vol. 192(2), pages 396-413, January.
    14. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    15. Michael Florian & Morton Klein, 1971. "Deterministic Production Planning with Concave Costs and Capacity Constraints," Management Science, INFORMS, vol. 18(1), pages 12-20, September.
    16. Petersen, Charles G. & Aase, Gerald, 2004. "A comparison of picking, storage, and routing policies in manual order picking," International Journal of Production Economics, Elsevier, vol. 92(1), pages 11-19, November.
    17. A Ostertag & K F Doerner & R F Hartl & E D Taillard & P Waelti, 2009. "POPMUSIC for a real-world large-scale vehicle routing problem with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 934-943, July.
    18. Transchel, Sandra & Minner, Stefan, 2009. "Dynamic pricing and replenishment in the warehouse scheduling problem--A common cycle approach," International Journal of Production Economics, Elsevier, vol. 118(1), pages 331-338, March.
    19. Pan, Jason Chao-Hsien & Wu, Ming-Hung & Chang, Wen-Liang, 2014. "A travel time estimation model for a high-level picker-to-part system with class-based storage policies," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1054-1066.
    20. Hwang, Hark-Chin & Kang, Jangha, 2016. "Two-phase algorithm for the lot-sizing problem with backlogging for stepwise transportation cost without speculative motives," Omega, Elsevier, vol. 59(PB), pages 238-250.
    21. Chen, Haoxun, 2015. "Fix-and-optimize and variable neighborhood search approaches for multi-level capacitated lot sizing problems," Omega, Elsevier, vol. 56(C), pages 25-36.
    22. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Gang & Feng, Haolin & Luo, Kaiyi & Tang, Yanli, 2021. "Retrieval-oriented storage relocation optimization of an automated storage and retrieval system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    2. van der Gaast, Jelmer Pier & Weidinger, Felix, 2022. "A deep learning approach for the selection of an order picking system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 530-543.
    3. Maniezzo, Vittorio & Boschetti, Marco A. & Gutjahr, Walter J., 2021. "Stochastic premarshalling of block stacking warehouses," Omega, Elsevier, vol. 102(C).
    4. Habib Zare & Mahyar Kamali Saraji & Madjid Tavana & Dalia Streimikiene & Fausto Cavallaro, 2021. "An Integrated Fuzzy Goal Programming—Theory of Constraints Model for Production Planning and Optimization," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    5. Polten, Lukas & Emde, Simon, 2021. "Scheduling automated guided vehicles in very narrow aisle warehouses," Omega, Elsevier, vol. 99(C).
    6. Lanza, Giacomo & Passacantando, Mauro & Scutellà, Maria Grazia, 2022. "Assigning and sequencing storage locations under a two level storage policy: Optimization model and matheuristic approaches," Omega, Elsevier, vol. 108(C).
    7. Zhang, Guoqing & Shang, Xiaoting & Alawneh, Fawzat & Yang, Yiqin & Nishi, Tatsushi, 2021. "Integrated production planning and warehouse storage assignment problem: An IoT assisted case," International Journal of Production Economics, Elsevier, vol. 234(C).
    8. Qiu, Ruozhen & Sun, Yue & Sun, Minghe, 2022. "A robust optimization approach for multi-product inventory management in a dual-channel warehouse under demand uncertainties," Omega, Elsevier, vol. 109(C).
    9. Wu, Dexiang & Dash Wu, Desheng, 2019. "An enhanced decision support approach for learning and tracking derivative index," Omega, Elsevier, vol. 88(C), pages 63-76.
    10. Pan, Yanghua & Zhong, Ray Y. & Qu, Ting & Ding, Liqiang & Zhang, Jun, 2024. "Multi-level digital twin-driven kitting-synchronized optimization for production logistics system," International Journal of Production Economics, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Guoqing & Shang, Xiaoting & Alawneh, Fawzat & Yang, Yiqin & Nishi, Tatsushi, 2021. "Integrated production planning and warehouse storage assignment problem: An IoT assisted case," International Journal of Production Economics, Elsevier, vol. 234(C).
    2. Chen, Gang & Feng, Haolin & Luo, Kaiyi & Tang, Yanli, 2021. "Retrieval-oriented storage relocation optimization of an automated storage and retrieval system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    3. Giannikas, Vaggelis & Lu, Wenrong & Robertson, Brian & McFarlane, Duncan, 2017. "An interventionist strategy for warehouse order picking: Evidence from two case studies," International Journal of Production Economics, Elsevier, vol. 189(C), pages 63-76.
    4. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    5. van Gils, Teun & Ramaekers, Katrien & Braekers, Kris & Depaire, Benoît & Caris, An, 2018. "Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 243-261.
    6. Derhami, Shahab & Smith, Jeffrey S. & Gue, Kevin R., 2020. "A simulation-based optimization approach to design optimal layouts for block stacking warehouses," International Journal of Production Economics, Elsevier, vol. 223(C).
    7. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    8. Zhang, Jingran & Onal, Sevilay & Das, Sanchoy, 2020. "The dynamic stocking location problem – Dispersing inventory in fulfillment warehouses with explosive storage," International Journal of Production Economics, Elsevier, vol. 224(C).
    9. Hwang, Hark-Chin & Kang, Jangha, 2016. "Two-phase algorithm for the lot-sizing problem with backlogging for stepwise transportation cost without speculative motives," Omega, Elsevier, vol. 59(PB), pages 238-250.
    10. De Santis, Roberta & Montanari, Roberto & Vignali, Giuseppe & Bottani, Eleonora, 2018. "An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses," European Journal of Operational Research, Elsevier, vol. 267(1), pages 120-137.
    11. Tutam, Mahmut & White, John A., 2019. "Multi-dock unit-load warehouse designs with a cross-aisle," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 247-262.
    12. Ene, Seval & Küçükoğlu, İlker & Aksoy, Aslı & Öztürk, Nursel, 2016. "A genetic algorithm for minimizing energy consumption in warehouses," Energy, Elsevier, vol. 114(C), pages 973-980.
    13. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2020. "Integrating storage location and order picking problems in warehouse planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    14. Fangyu Chen & Hongwei Wang & Yong Xie & Chao Qi, 2016. "An ACO-based online routing method for multiple order pickers with congestion consideration in warehouse," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 389-408, April.
    15. Mocquillon, Cédric & Lenté, Christophe & T'Kindt, Vincent, 2011. "An efficient heuristic for medium-term planning in shampoo production," International Journal of Production Economics, Elsevier, vol. 129(1), pages 178-185, January.
    16. Guo, Xiaolong & Chen, Ran & Du, Shaofu & Yu, Yugang, 2021. "Storage assignment for newly arrived items in forward picking areas with limited open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    17. Vidal Vieira, José Geraldo & Ramos Toso, Milton & da Silva, João Eduardo Azevedo Ramos & Cabral Ribeiro, Priscilla Cristina, 2017. "An AHP-based framework for logistics operations in distribution centres," International Journal of Production Economics, Elsevier, vol. 187(C), pages 246-259.
    18. Robert J. Batt & Santiago Gallino, 2019. "Finding a Needle in a Haystack: The Effects of Searching and Learning on Pick-Worker Performance," Management Science, INFORMS, vol. 67(6), pages 2624-2645, June.
    19. Heiko Diefenbach & Simon Emde & Christoph H. Glock & Eric H. Grosse, 2022. "New solution procedures for the order picker routing problem in U-shaped pick areas with a movable depot," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 535-573, June.
    20. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:68:y:2017:i:c:p:85-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.