IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v278y2019i1p186-201.html
   My bibliography  Save this article

How to optimize storage classes in a unit-load warehouse

Author

Listed:
  • Ang, Marcus
  • Lim, Yun Fong

Abstract

We study a problem of optimizing storage classes in a unit-load warehouse such that the total travel cost is minimized. This is crucial to the operational efficiency of unit-load warehouses, which constitute a critical part of a supply chain. We propose a novel approach called the FB method to solve the problem. The FB method is suitable for general receiving-dock and shipping-dock locations that may not coincide. The FB method first ranks the locations according to the frequencies that they are visited, which are estimated by a linear program based on the warehouse’s layout as well as the products’ arrivals and demands. The method then sequentially groups the locations into a number of classes that is implementable in practice. After forming the classes, we use a policy based on robust optimization to determine the storage and retrieval decisions. We compare the robust policy with the traditional storage-retrieval policies on their respective optimized classes. Our results suggest that if the warehouse utilization is low, different class-formation methods may lead to very different total travel costs, with our approach being the most efficient. We observe the robustness of this result across various parameter settings. A case study based on data from a third-party logistics provider suggests that the robust policy under the FB method outperforms the other storage-retrieval policies by at least 8% on average, which indicates the potential savings by our approach in practice. One of our findings is that the importance of optimizing classes depends on the warehouse utilization.

Suggested Citation

  • Ang, Marcus & Lim, Yun Fong, 2019. "How to optimize storage classes in a unit-load warehouse," European Journal of Operational Research, Elsevier, vol. 278(1), pages 186-201.
  • Handle: RePEc:eee:ejores:v:278:y:2019:i:1:p:186-201
    DOI: 10.1016/j.ejor.2019.03.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719303042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.03.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yugang Yu & René B.M. Koster & Xiaolong Guo, 2015. "Class-Based Storage with a Finite Number of Items: Using More Classes is not Always Better," Production and Operations Management, Production and Operations Management Society, vol. 24(8), pages 1235-1247, August.
    2. Melh Çelk & Haldun Süral, 2014. "Order picking under random and turnover-based storage policies in fishbone aisle warehouses," IISE Transactions, Taylor & Francis Journals, vol. 46(3), pages 283-300.
    3. Marc Goetschalckx & H. Donald Ratliff, 1990. "Shared Storage Policies Based on the Duration Stay of Unit Loads," Management Science, INFORMS, vol. 36(9), pages 1120-1132, September.
    4. Meir J. Rosenblatt & Amit Eynan, 1989. "Note---Deriving the Optimal Boundaries for Class-Based Automatic Storage/Retrieval Systems," Management Science, INFORMS, vol. 35(12), pages 1519-1524, December.
    5. Lisa M. Thomas & Russell D. Meller, 2014. "Analytical models for warehouse configuration," IISE Transactions, Taylor & Francis Journals, vol. 46(9), pages 928-947, September.
    6. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    7. Amir Hossein Gharehgozli & Yugang Yu & Xiandong Zhang & René de Koster, 2017. "Polynomial Time Algorithms to Minimize Total Travel Time in a Two-Depot Automated Storage/Retrieval System," Transportation Science, INFORMS, vol. 51(1), pages 19-33, February.
    8. Subir S. Rao & Gajendra K. Adil, 2017. "Analytical models for a new turnover-based hybrid storage policy in unit-load warehouses," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 327-346, January.
    9. Kevin Gue & Russell Meller, 2009. "Aisle configurations for unit-load warehouses," IISE Transactions, Taylor & Francis Journals, vol. 41(3), pages 171-182.
    10. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    11. Ulrich W. Thonemann & Margaret L. Brandeau, 1998. "Note. Optimal Storage Assignment Policies for Automated Storage and Retrieval Systems with Stochastic Demands," Management Science, INFORMS, vol. 44(1), pages 142-148, January.
    12. Warren H. Hausman & Leroy B. Schwarz & Stephen C. Graves, 1976. "Optimal Storage Assignment in Automatic Warehousing Systems," Management Science, INFORMS, vol. 22(6), pages 629-638, February.
    13. Xiaolong Guo & Yugang Yu & René B.M. De Koster, 2016. "Impact of required storage space on storage policy performance in a unit-load warehouse," International Journal of Production Research, Taylor & Francis Journals, vol. 54(8), pages 2405-2418, April.
    14. Nima Zaerpour & Yugang Yu & René de Koster, 2017. "Small is Beautiful: A Framework for Evaluating and Optimizing Live-Cube Compact Storage Systems," Transportation Science, INFORMS, vol. 51(1), pages 34-51, February.
    15. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    16. Marcus Ang & Yun Fong Lim & Melvyn Sim, 2012. "Robust Storage Assignment in Unit-Load Warehouses," Management Science, INFORMS, vol. 58(11), pages 2114-2130, November.
    17. Nima Zaerpour & Yugang Yu & René B.M. de Koster, 2017. "Optimal two-class-based storage in a live-cube compact storage system," IISE Transactions, Taylor & Francis Journals, vol. 49(7), pages 653-668, July.
    18. Letitia Pohl & Russell Meller & Kevin Gue, 2011. "Turnover-based storage in non-traditional unit-load warehouse designs," IISE Transactions, Taylor & Francis Journals, vol. 43(10), pages 703-720.
    19. Öztürkoğlu, Ömer & Hoser, Deniz, 2019. "A discrete cross aisle design model for order-picking warehouses," European Journal of Operational Research, Elsevier, vol. 275(2), pages 411-430.
    20. Roodbergen, Kees Jan & Vis, Iris F.A., 2009. "A survey of literature on automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 194(2), pages 343-362, April.
    21. Öztürkoğlu, Ö. & Gue, K.R. & Meller, R.D., 2014. "A constructive aisle design model for unit-load warehouses with multiple pickup and deposit points," European Journal of Operational Research, Elsevier, vol. 236(1), pages 382-394.
    22. Stephen C. Graves & Warren H. Hausman & Leroy B. Schwarz, 1977. "Storage-Retrieval Interleaving in Automatic Warehousing Systems," Management Science, INFORMS, vol. 23(9), pages 935-945, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    2. Péter Dobos & Ákos Cservenák & Róbert Skapinyecz & Béla Illés & Péter Tamás, 2021. "Development of an Industry 4.0-Based Analytical Method for the Value Stream Centered Optimization of Demand-Driven Warehousing Systems," Sustainability, MDPI, vol. 13(21), pages 1-33, October.
    3. Yue Chen & Yisong Li, 2024. "Storage Location Assignment for Improving Human–Robot Collaborative Order-Picking Efficiency in Robotic Mobile Fulfillment Systems," Sustainability, MDPI, vol. 16(5), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Xiaolong & Chen, Ran & Du, Shaofu & Yu, Yugang, 2021. "Storage assignment for newly arrived items in forward picking areas with limited open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    2. Derhami, Shahab & Smith, Jeffrey S. & Gue, Kevin R., 2020. "A simulation-based optimization approach to design optimal layouts for block stacking warehouses," International Journal of Production Economics, Elsevier, vol. 223(C).
    3. Zhuxi Chen & Xiaoping Li & Jatinder N.D. Gupta, 2016. "Sequencing the storages and retrievals for flow-rack automated storage and retrieval systems with duration-of-stay storage policy," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 984-998, February.
    4. Marcus Ang & Yun Fong Lim & Melvyn Sim, 2012. "Robust Storage Assignment in Unit-Load Warehouses," Management Science, INFORMS, vol. 58(11), pages 2114-2130, November.
    5. Li Zhou & Huwei Liu & Junhui Zhao & Fan Wang & Jianglong Yang, 2022. "Performance Analysis of Picking Routing Strategies in the Leaf Layout Warehouse," Mathematics, MDPI, vol. 10(17), pages 1-28, September.
    6. Chen, Gang & Feng, Haolin & Luo, Kaiyi & Tang, Yanli, 2021. "Retrieval-oriented storage relocation optimization of an automated storage and retrieval system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    7. Yu, Y. & de Koster, M.B.M., 2009. "On the Suboptimality of Full Turnover-Based Storage," ERIM Report Series Research in Management ERS-2009-051-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Bortolini, Marco & Faccio, Maurizio & Gamberi, Mauro & Manzini, Riccardo, 2015. "Diagonal cross-aisles in unit load warehouses to increase handling performance," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 838-849.
    9. Roodbergen, Kees Jan & Vis, Iris F.A., 2009. "A survey of literature on automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 194(2), pages 343-362, April.
    10. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    11. Silva, Allyson & Roodbergen, Kees Jan & Coelho, Leandro C. & Darvish, Maryam, 2022. "Estimating optimal ABC zone sizes in manual warehouses," International Journal of Production Economics, Elsevier, vol. 252(C).
    12. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    13. Tutam, Mahmut & White, John A., 2019. "Multi-dock unit-load warehouse designs with a cross-aisle," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 247-262.
    14. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2024. "Improving order picking efficiency through storage assignment optimization in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 316(2), pages 718-732.
    15. Azadeh, K. & de Koster, M.B.M. & Roy, D., 2017. "Robotized Warehouse Systems: Developments and Research Opportunities," ERIM Report Series Research in Management ERS-2017-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    17. Subir S. Rao & Gajendra K. Adil, 2017. "Analytical models for a new turnover-based hybrid storage policy in unit-load warehouses," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 327-346, January.
    18. Tian Liu & Xianhao Xu & Hu Qin & Andrew Lim, 2016. "Travel time analysis of the dual command cycle in the split-platform AS/RS with I/O dwell point policy," Flexible Services and Manufacturing Journal, Springer, vol. 28(3), pages 442-460, September.
    19. Laura Lüke & Katrin Heßler & Stefan Irnich, 2024. "The single picker routing problem with scattered storage: modeling and evaluation of routing and storage policies," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 909-951, September.
    20. Lanza, Giacomo & Passacantando, Mauro & Scutellà, Maria Grazia, 2022. "Assigning and sequencing storage locations under a two level storage policy: Optimization model and matheuristic approaches," Omega, Elsevier, vol. 108(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:278:y:2019:i:1:p:186-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.