IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v267y2018i1p120-137.html
   My bibliography  Save this article

An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses

Author

Listed:
  • De Santis, Roberta
  • Montanari, Roberto
  • Vignali, Giuseppe
  • Bottani, Eleonora

Abstract

This paper proposes a new metaheuristic routing algorithm for the minimization of the travel distance of pickers in manual warehouses. The algorithm is based on the ant colony optimization (ACO) metaheuristic, which is combined and integrated with the Floyd–Warshall (FW) algorithm, and is therefore referred to as FW–ACO. To assess the performance of the FW–ACO algorithm, two sets of analyses are carried out. Firstly, the capability of the algorithm to provide effective solutions for the picking problem is analyzed as a function of the settings of the main ACO parameters. Secondly, the performance of the FW–ACO algorithm is compared with that of six algorithms typically used to optimize the travel distance of pickers, including exact algorithms for the solution of the travelling salesman problem (where available), two heuristic routing strategies (i.e. S-shape and largest gap) and two metaheuristic algorithms (i.e. the MIN–MAX ant system and Combined+). The comparison is made considering different warehouse layouts and problem complexities. The outcomes obtained suggest that the FW–ACO is a promising algorithm generally able to provide better results than the heuristic and metaheuristic algorithms, and often able to find an exact solution. The FW–ACO algorithm also shows a very efficient computational time, which makes it suitable for defining the route of pickers in real time. The FW–ACO algorithm is finally implemented in a real case study, where constraints exist on the order in which items should be picked, to show its practical usefulness and quantify the resulting savings.

Suggested Citation

  • De Santis, Roberta & Montanari, Roberto & Vignali, Giuseppe & Bottani, Eleonora, 2018. "An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses," European Journal of Operational Research, Elsevier, vol. 267(1), pages 120-137.
  • Handle: RePEc:eee:ejores:v:267:y:2018:i:1:p:120-137
    DOI: 10.1016/j.ejor.2017.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717310287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, G.Q. & Lai, K.K., 2006. "Combining path relinking and genetic algorithms for the multiple-level warehouse layout problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 413-425, March.
    2. Van Nieuwenhuyse, Inneke & de Koster, René B.M., 2009. "Evaluating order throughput time in 2-block warehouses with time window batching," International Journal of Production Economics, Elsevier, vol. 121(2), pages 654-664, October.
    3. Melh Çelk & Haldun Süral, 2014. "Order picking under random and turnover-based storage policies in fishbone aisle warehouses," IISE Transactions, Taylor & Francis Journals, vol. 46(3), pages 283-300.
    4. Sebastian Henn & Sören Koch & Gerhard Wäscher, 2011. "Order Batching in Order Picking Warehouses: A Survey of Solution Approaches," FEMM Working Papers 110001, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    5. Matusiak, Marek & de Koster, René & Kroon, Leo & Saarinen, Jari, 2014. "A fast simulated annealing method for batching precedence-constrained customer orders in a warehouse," European Journal of Operational Research, Elsevier, vol. 236(3), pages 968-977.
    6. Le-Duc, Tho & de Koster, Rene M.B.M., 2007. "Travel time estimation and order batching in a 2-block warehouse," European Journal of Operational Research, Elsevier, vol. 176(1), pages 374-388, January.
    7. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    8. Hong, Soondo & Johnson, Andrew L. & Peters, Brett A., 2012. "Batch picking in narrow-aisle order picking systems with consideration for picker blocking," European Journal of Operational Research, Elsevier, vol. 221(3), pages 557-570.
    9. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    10. Scholz, André & Henn, Sebastian & Stuhlmann, Meike & Wäscher, Gerhard, 2016. "A new mathematical programming formulation for the Single-Picker Routing Problem," European Journal of Operational Research, Elsevier, vol. 253(1), pages 68-84.
    11. Rouwenhorst, B. & Reuter, B. & Stockrahm, V. & van Houtum, G. J. & Mantel, R. J. & Zijm, W. H. M., 2000. "Warehouse design and control: Framework and literature review," European Journal of Operational Research, Elsevier, vol. 122(3), pages 515-533, May.
    12. Subir Rao & Gajendra Adil, 2013. "Optimal class boundaries, number of aisles, and pick list size for low-level order picking systems," IISE Transactions, Taylor & Francis Journals, vol. 45(12), pages 1309-1321.
    13. H. Donald Ratliff & Arnon S. Rosenthal, 1983. "Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(3), pages 507-521, June.
    14. Jane, Chin-Chia & Laih, Yih-Wenn, 2005. "A clustering algorithm for item assignment in a synchronized zone order picking system," European Journal of Operational Research, Elsevier, vol. 166(2), pages 489-496, October.
    15. Petersen, Charles G. & Aase, Gerald, 2004. "A comparison of picking, storage, and routing policies in manual order picking," International Journal of Production Economics, Elsevier, vol. 92(1), pages 11-19, November.
    16. Mowrey, Corinne H. & Parikh, Pratik J., 2014. "Mixed-width aisle configurations for order picking in distribution centers," European Journal of Operational Research, Elsevier, vol. 232(1), pages 87-97.
    17. Roodbergen, Kees Jan & de Koster, Rene, 2001. "Routing order pickers in a warehouse with a middle aisle," European Journal of Operational Research, Elsevier, vol. 133(1), pages 32-43, August.
    18. Pan, Jason Chao-Hsien & Wu, Ming-Hung & Chang, Wen-Liang, 2014. "A travel time estimation model for a high-level picker-to-part system with class-based storage policies," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1054-1066.
    19. Lu, Wenrong & McFarlane, Duncan & Giannikas, Vaggelis & Zhang, Quan, 2016. "An algorithm for dynamic order-picking in warehouse operations," European Journal of Operational Research, Elsevier, vol. 248(1), pages 107-122.
    20. Parikh, Pratik J. & Meller, Russell D., 2010. "A travel-time model for a person-onboard order picking system," European Journal of Operational Research, Elsevier, vol. 200(2), pages 385-394, January.
    21. Theys, Christophe & Bräysy, Olli & Dullaert, Wout & Raa, Birger, 2010. "Using a TSP heuristic for routing order pickers in warehouses," European Journal of Operational Research, Elsevier, vol. 200(3), pages 755-763, February.
    22. Fangyu Chen & Hongwei Wang & Yong Xie & Chao Qi, 2016. "An ACO-based online routing method for multiple order pickers with congestion consideration in warehouse," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 389-408, April.
    23. Eggers, Jan & Feillet, Dominique & Kehl, Steffen & Oliver Wagner, Marc & Yannou, Bernard, 2003. "Optimization of the keyboard arrangement problem using an Ant Colony algorithm," European Journal of Operational Research, Elsevier, vol. 148(3), pages 672-686, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimo Bertolini & Davide Mezzogori & Francesco Zammori, 2023. "Enhancing Manual Order Picking through a New Metaheuristic, Based on Particle Swarm Optimization," Mathematics, MDPI, vol. 11(14), pages 1-37, July.
    2. Saylam, Serhat & Çelik, Melih & Süral, Haldun, 2024. "Arc routing based compact formulations for picker routing in single and two block parallel aisle warehouses," European Journal of Operational Research, Elsevier, vol. 313(1), pages 225-240.
    3. Arbex Valle, Cristiano & Beasley, John E, 2020. "Order batching using an approximation for the distance travelled by pickers," European Journal of Operational Research, Elsevier, vol. 284(2), pages 460-484.
    4. Li Zhou & Huwei Liu & Junhui Zhao & Fan Wang & Jianglong Yang, 2022. "Performance Analysis of Picking Routing Strategies in the Leaf Layout Warehouse," Mathematics, MDPI, vol. 10(17), pages 1-28, September.
    5. Taniya Mukherjee & Isha Sangal & Biswajit Sarkar & Tamer M. Alkadash & Qais Almaamari, 2023. "Pallet Distribution Affecting a Machine’s Utilization Level and Picking Time," Mathematics, MDPI, vol. 11(13), pages 1-17, July.
    6. Çelik, Melih & Archetti, Claudia & Süral, Haldun, 2022. "Inventory routing in a warehouse: The storage replenishment routing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1117-1132.
    7. Fangyu Chen & Gangyan Xu & Yongchang Wei, 2019. "An Integrated Metaheuristic Routing Method for Multiple-Block Warehouses with Ultranarrow Aisles and Access Restriction," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    8. Giacomo Lanza & Mauro Passacantando & Maria Grazia Scutellà, 2024. "Matheuristic approaches to the green sequencing and routing problem," Flexible Services and Manufacturing Journal, Springer, vol. 36(3), pages 994-1045, September.
    9. Atashi Khoei, Arsham & Süral, Haldun & Tural, Mustafa Kemal, 2023. "Energy minimizing order picker forklift routing problem," European Journal of Operational Research, Elsevier, vol. 307(2), pages 604-626.
    10. Wenwen Chen & Yangchongyi Men & Noelia Fuster & Celia Osorio & Angel A. Juan, 2024. "Artificial Intelligence in Logistics Optimization with Sustainable Criteria: A Review," Sustainability, MDPI, vol. 16(21), pages 1-22, October.
    11. Guo, Xiaolong & Chen, Ran & Du, Shaofu & Yu, Yugang, 2021. "Storage assignment for newly arrived items in forward picking areas with limited open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    12. Maria A. M. Trindade & Paulo S. A. Sousa & Maria R. A. Moreira, 2022. "Ramping up a heuristic procedure for storage location assignment problem with precedence constraints," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 646-669, September.
    13. Rajabighamchi, Farzaneh & van Hoesel, Stan & Defryn, Christof, 2023. "Graph reduction for the planar Travelling Salesman Problem," Research Memorandum 004, Maastricht University, Graduate School of Business and Economics (GSBE).
    14. Jose Alejandro Cano & Pablo Cortés & Jesús Muñuzuri & Alexander Correa-Espinal, 2023. "Solving the picker routing problem in multi-block high-level storage systems using metaheuristics," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 376-415, June.
    15. Roozbeh Nia, Ali & Awasthi, Anjali & Bhuiyan, Nadia, 2023. "Integrate exergy costs and carbon reduction policy in order to optimize the sustainability development of coal supply chains in uncertain conditions," International Journal of Production Economics, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masae, Makusee & Glock, Christoph H. & Vichitkunakorn, Panupong, 2021. "A method for efficiently routing order pickers in the leaf warehouse," International Journal of Production Economics, Elsevier, vol. 234(C).
    2. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    3. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    4. Heiko Diefenbach & Simon Emde & Christoph H. Glock & Eric H. Grosse, 2022. "New solution procedures for the order picker routing problem in U-shaped pick areas with a movable depot," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 535-573, June.
    5. Glock, Christoph H. & Grosse, Eric H. & Abedinnia, Hamid & Emde, Simon, 2019. "An integrated model to improve ergonomic and economic performance in order picking by rotating pallets," European Journal of Operational Research, Elsevier, vol. 273(2), pages 516-534.
    6. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    7. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    8. Fangyu Chen & Yongchang Wei & Hongwei Wang, 2018. "A heuristic based batching and assigning method for online customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 640-685, December.
    9. Arbex Valle, Cristiano & Beasley, John E, 2020. "Order batching using an approximation for the distance travelled by pickers," European Journal of Operational Research, Elsevier, vol. 284(2), pages 460-484.
    10. Giannikas, Vaggelis & Lu, Wenrong & Robertson, Brian & McFarlane, Duncan, 2017. "An interventionist strategy for warehouse order picking: Evidence from two case studies," International Journal of Production Economics, Elsevier, vol. 189(C), pages 63-76.
    11. Pardo, Eduardo G. & Gil-Borrás, Sergio & Alonso-Ayuso, Antonio & Duarte, Abraham, 2024. "Order batching problems: Taxonomy and literature review," European Journal of Operational Research, Elsevier, vol. 313(1), pages 1-24.
    12. Hsieh, Ling-Feng & Huang, Yi-Chen, 2011. "New batch construction heuristics to optimise the performance of order picking systems," International Journal of Production Economics, Elsevier, vol. 131(2), pages 618-630, June.
    13. Sandra Hahn & André Scholz, 2017. "Order Picking in Narrow-Aisle Warehouses: A Fast Approach to Minimize Waiting Times," FEMM Working Papers 170006, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    14. Valle, Cristiano Arbex & Beasley, John E. & da Cunha, Alexandre Salles, 2017. "Optimally solving the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 817-834.
    15. Fangyu Chen & Gangyan Xu & Yongchang Wei, 2019. "An Integrated Metaheuristic Routing Method for Multiple-Block Warehouses with Ultranarrow Aisles and Access Restriction," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    16. van Gils, Teun & Ramaekers, Katrien & Braekers, Kris & Depaire, Benoît & Caris, An, 2018. "Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 243-261.
    17. Yu, M. & de Koster, M.B.M., 2007. "Performance Approximation and Design of Pick-and-Pass Order Picking Systems," ERIM Report Series Research in Management ERS-2007-082-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. Ardjmand, Ehsan & Shakeri, Heman & Singh, Manjeet & Sanei Bajgiran, Omid, 2018. "Minimizing order picking makespan with multiple pickers in a wave picking warehouse," International Journal of Production Economics, Elsevier, vol. 206(C), pages 169-183.
    19. Lu, Wenrong & McFarlane, Duncan & Giannikas, Vaggelis & Zhang, Quan, 2016. "An algorithm for dynamic order-picking in warehouse operations," European Journal of Operational Research, Elsevier, vol. 248(1), pages 107-122.
    20. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:267:y:2018:i:1:p:120-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.