IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v129y2011i1p178-185.html
   My bibliography  Save this article

An efficient heuristic for medium-term planning in shampoo production

Author

Listed:
  • Mocquillon, Cédric
  • Lenté, Christophe
  • T'Kindt, Vincent

Abstract

This paper presents a single machine problem which occurs in shampoo production at medium-term planning phase. The considered production plant is linked to subsidiary companies which are themselves linked to final customers. The aim is to answer subsidiary companies requests by keeping their stocks in a window defined by their safety stock and maximum inventory levels. After an introduction, we present a formal definition of the problem. Next, we present a two-phase heuristic algorithm: the first phase is based on a greedy algorithm and the second phase on the Goldberg and Tarjan algorithm for the minimum cost flow problem. Experimental testings close to industrial instances show that the heuristic performs very efficiently.

Suggested Citation

  • Mocquillon, Cédric & Lenté, Christophe & T'Kindt, Vincent, 2011. "An efficient heuristic for medium-term planning in shampoo production," International Journal of Production Economics, Elsevier, vol. 129(1), pages 178-185, January.
  • Handle: RePEc:eee:proeco:v:129:y:2011:i:1:p:178-185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(10)00361-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lukac, Zrinka & Soric, Kristina & Rosenzweig, Visnja Vojvodic, 2008. "Production planning problem with sequence dependent setups as a bilevel programming problem," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1504-1512, June.
    2. Morton Klein, 1967. "A Primal Method for Minimal Cost Flows with Applications to the Assignment and Transportation Problems," Management Science, INFORMS, vol. 14(3), pages 205-220, November.
    3. Gabriel R. Bitran & Horacio H. Yanasse, 1982. "Computational Complexity of the Capacitated Lot Size Problem," Management Science, INFORMS, vol. 28(10), pages 1174-1186, October.
    4. Nam, Sang-jin & Logendran, Rasaratnam, 1992. "Aggregate production planning -- A survey of models and methodologies," European Journal of Operational Research, Elsevier, vol. 61(3), pages 255-272, September.
    5. Drexl, Andreas & Haase, Knut, 1995. "Proportional lotsizing and scheduling," International Journal of Production Economics, Elsevier, vol. 40(1), pages 73-87, June.
    6. Gary D. Eppen & R. Kipp Martin, 1987. "Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable Redefinition," Operations Research, INFORMS, vol. 35(6), pages 832-848, December.
    7. Imre Barany & Tony J. Van Roy & Laurence A. Wolsey, 1984. "Strong Formulations for Multi-Item Capacitated Lot Sizing," Management Science, INFORMS, vol. 30(10), pages 1255-1261, October.
    8. Liu, X. & Tu, Yl., 2008. "Production planning with limited inventory capacity and allowed stockout," International Journal of Production Economics, Elsevier, vol. 111(1), pages 180-191, January.
    9. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    10. Absi, Nabil & Kedad-Sidhoum, Safia, 2008. "The multi-item capacitated lot-sizing problem with setup times and shortage costs," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1351-1374, March.
    11. Carsten Jordan & Andreas Drexl, 1998. "Discrete Lotsizing and Scheduling by Batch Sequencing," Management Science, INFORMS, vol. 44(5), pages 698-713, May.
    12. Bruggemann, Wolfgang & Jahnke, Hermann, 2000. "The discrete lot-sizing and scheduling problem: Complexity and modification for batch availability," European Journal of Operational Research, Elsevier, vol. 124(3), pages 511-528, August.
    13. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    14. M. Florian & J. K. Lenstra & A. H. G. Rinnooy Kan, 1980. "Deterministic Production Planning: Algorithms and Complexity," Management Science, INFORMS, vol. 26(7), pages 669-679, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belaid, R. & T’kindt, V. & Esswein, C., 2012. "Scheduling batches in flowshop with limited buffers in the shampoo industry," European Journal of Operational Research, Elsevier, vol. 223(2), pages 560-572.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    2. Andrea Raiconi & Julia Pahl & Monica Gentili & Stefan Voß & Raffaele Cerulli, 2017. "Tactical Production and Lot Size Planning with Lifetime Constraints: A Comparison of Model Formulations," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(05), pages 1-24, October.
    3. B Karimi & S M T Fatemi Ghomi & J M Wilson, 2006. "A tabu search heuristic for solving the CLSP with backlogging and set-up carry-over," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(2), pages 140-147, February.
    4. Drexl, Andreas & Kimms, Alf, 1996. "Lot sizing and scheduling: Survey and extensions," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 421, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    5. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    6. Drexl, A. & Kimms, A., 1997. "Lot sizing and scheduling -- Survey and extensions," European Journal of Operational Research, Elsevier, vol. 99(2), pages 221-235, June.
    7. Petering, Matthew E.H. & Chen, Xi & Hsieh, Wen-Huan, 2019. "Inventory control with flexible demand: Cyclic case with multiple batch supply and demand processes," International Journal of Production Economics, Elsevier, vol. 212(C), pages 60-77.
    8. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    9. Zhang, Guoqing & Nishi, Tatsushi & Turner, Sarina D.O. & Oga, Keisuke & Li, Xindan, 2017. "An integrated strategy for a production planning and warehouse layout problem: Modeling and solution approaches," Omega, Elsevier, vol. 68(C), pages 85-94.
    10. Leonardo Lozano & J. Cole Smith, 2017. "A Backward Sampling Framework for Interdiction Problems with Fortification," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 123-139, February.
    11. Daniel Quadt & Heinrich Kuhn, 2009. "Capacitated lot‐sizing and scheduling with parallel machines, back‐orders, and setup carry‐over," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(4), pages 366-384, June.
    12. Berk, Emre & Toy, Ayhan Ozgur & Hazir, Oncu, 2008. "Single item lot-sizing problem for a warm/cold process with immediate lost sales," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1251-1267, June.
    13. Wei, Mingyuan & Qi, Mingyao & Wu, Tao & Zhang, Canrong, 2019. "Distance and matching-induced search algorithm for the multi-level lot-sizing problem with substitutable bill of materials," European Journal of Operational Research, Elsevier, vol. 277(2), pages 521-541.
    14. Dogacan Yilmaz & İ. Esra Büyüktahtakın, 2023. "Learning Optimal Solutions via an LSTM-Optimization Framework," SN Operations Research Forum, Springer, vol. 4(2), pages 1-40, June.
    15. Kerem Akartunalı & Andrew Miller, 2012. "A computational analysis of lower bounds for big bucket production planning problems," Computational Optimization and Applications, Springer, vol. 53(3), pages 729-753, December.
    16. Awi Federgruen & Joern Meissner & Michal Tzur, 2007. "Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 55(3), pages 490-502, June.
    17. Nadjib Brahimi & Stéphane Dauzère-Pérès & Najib M. Najid, 2006. "Capacitated Multi-Item Lot-Sizing Problems with Time Windows," Operations Research, INFORMS, vol. 54(5), pages 951-967, October.
    18. Kolisch, R., 2000. "Integration of assembly and fabrication for make-to-order production," International Journal of Production Economics, Elsevier, vol. 68(3), pages 287-306, December.
    19. Wei, Wenchao & Guimarães, Luis & Amorim, Pedro & Almada-Lobo, Bernardo, 2017. "Tactical production and distribution planning with dependency issues on the production process," Omega, Elsevier, vol. 67(C), pages 99-114.
    20. Francesco Gaglioppa & Lisa A. Miller & Saif Benjaafar, 2008. "Multitask and Multistage Production Planning and Scheduling for Process Industries," Operations Research, INFORMS, vol. 56(4), pages 1010-1025, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:129:y:2011:i:1:p:178-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.