Author
Listed:
- Melega, Gislaine Mara
- Xu, Chi
- Jans, Raf
- Paquette, Julie
Abstract
In this paper, we study the interaction between the lot-sizing problem and the storage assignment problem. Traditional lot-sizing problems have been studied for decades. However, only recent studies have further considered decisions related to the assignment of items to inventory locations, aiming to better model the complex reality. In our problem, the storage space is divided into several separate locations, and the inventory is assigned to the storage locations taking into account specific compatibility conditions. Relocation of inventory is also possible if needed. In addition to the traditional cost elements from the lot-sizing problem, we consider others related to holding inventory, such as fixed storage costs, handling costs, and relocation costs. We model the problem using a general mathematical model, as well as a transportation reformulation, which provides better lower bounds. We propose several heuristics to solve the problem by splitting it into smaller subproblems, which are then solved sequentially. A series of computational experiments is carried out in order to evaluate the impact of the integration between the lot-sizing and the storage assignment decisions, as well as the behavior of the different solution approaches. The results show that the proposed heuristics are highly effective in finding feasible solutions that are very close to the best solutions, while spending 97% less computational time compared to solving the full mathematical model. When compared to the relax-and-fix heuristic (benchmark), certain versions of the heuristics can find better solutions using less computational effort, underscoring the benefit of employing more specialized heuristics. Additionally, we conduct a sensitivity analysis with the aim of understanding the impact of key input parameters on the problem. The results indicate a significant influence of compatibility levels on the problem complexity. Limited item–item compatibility notably increases complexity, whereas restricted item–location compatibility reduces computational time.
Suggested Citation
Melega, Gislaine Mara & Xu, Chi & Jans, Raf & Paquette, Julie, 2025.
"An integrated approach for lot-sizing and storage assignment,"
Omega, Elsevier, vol. 131(C).
Handle:
RePEc:eee:jomega:v:131:y:2025:i:c:s0305048324001488
DOI: 10.1016/j.omega.2024.103183
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:131:y:2025:i:c:s0305048324001488. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.