IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i4p751-775.html
   My bibliography  Save this article

Asymptotic distribution of Wishart matrix for block-wise dispersion of population eigenvalues

Author

Listed:
  • Sheena, Yo
  • Takemura, Akimichi

Abstract

This paper deals with the asymptotic distribution of Wishart matrix and its application to the estimation of the population matrix parameter when the population eigenvalues are block-wise infinitely dispersed. We show that the appropriately normalized eigenvectors and eigenvalues asymptotically generate two Wishart matrices and one normally distributed random matrix, which are mutually independent. For a family of orthogonally equivariant estimators, we calculate the asymptotic risks with respect to the entropy or the quadratic loss function and derive the asymptotically best estimator among the family. We numerically show (1) the convergence in both the distributions and the risks are quick enough for a practical use, (2) the asymptotically best estimator is robust against the deviation of the population eigenvalues from the block-wise infinite dispersion.

Suggested Citation

  • Sheena, Yo & Takemura, Akimichi, 2008. "Asymptotic distribution of Wishart matrix for block-wise dispersion of population eigenvalues," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 751-775, April.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:4:p:751-775
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00055-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheena, Yo & Takemura, Akimichi, 1992. "Inadmissibility of non-order-preserving orthogonally invariant estimators of the covariance matrix in the case of Stein's loss," Journal of Multivariate Analysis, Elsevier, vol. 41(1), pages 117-131, April.
    2. Takemura, Akimichi & Sheena, Yo, 2005. "Distribution of eigenvalues and eigenvectors of Wishart matrix when the population eigenvalues are infinitely dispersed and its application to minimax estimation of covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 271-299, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatsuya Kubokawa & M. S. Srivastava, 1999. ""Estimating the Covariance Matrix: A New Approach", June 1999," CIRJE F-Series CIRJE-F-52, CIRJE, Faculty of Economics, University of Tokyo.
    2. Takemura, Akimichi & Sheena, Yo, 2005. "Distribution of eigenvalues and eigenvectors of Wishart matrix when the population eigenvalues are infinitely dispersed and its application to minimax estimation of covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 271-299, June.
    3. Tsai, Ming-Tien & Kubokawa, Tatsuya, 2007. "Estimation of Wishart mean matrices under simple tree ordering," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 945-959, May.
    4. Koki Shimizu & Hiroki Hashiguchi, 2024. "Chi-Square Approximation for the Distribution of Individual Eigenvalues of a Singular Wishart Matrix," Mathematics, MDPI, vol. 12(6), pages 1-11, March.
    5. Satoshi Kuriki, 1993. "Orthogonally invariant estimation of the skew-symmetric normal mean matrix," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(4), pages 731-739, December.
    6. Sheena Yo & Gupta Arjun K., 2003. "Estimation of the multivariate normal covariance matrix under some restrictions," Statistics & Risk Modeling, De Gruyter, vol. 21(4), pages 327-342, April.
    7. Kubokawa, T. & Srivastava, M. S., 2003. "Estimating the covariance matrix: a new approach," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 28-47, July.
    8. Konno, Yoshihiko, 2007. "Estimation of normal covariance matrices parametrized by irreducible symmetric cones under Stein's loss," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 295-316, February.
    9. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2011. "Modifying estimators of ordered positive parameters under the Stein loss," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 164-181, January.
    10. Besson, Olivier & Vincent, François & Gendre, Xavier, 2020. "A Stein’s approach to covariance matrix estimation using regularization of Cholesky factor and log-Cholesky metric," Statistics & Probability Letters, Elsevier, vol. 167(C).
    11. Perron, François, 1997. "On a Conjecture of Krishnamoorthy and Gupta, ," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 110-120, July.
    12. Tatsuya Kubokawa, 2004. "A Revisit to Estimation of the Precision Matrix of the Wishart Distribution," CIRJE F-Series CIRJE-F-264, CIRJE, Faculty of Economics, University of Tokyo.
    13. Jerome R. Simons, 2023. "Inference on eigenvectors of non-symmetric matrices," Papers 2303.18233, arXiv.org, revised Apr 2023.
    14. Ye, Ren-Dao & Wang, Song-Gui, 2009. "Improved estimation of the covariance matrix under Stein's loss," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 715-721, March.
    15. Tsukuma, Hisayuki, 2016. "Estimation of a high-dimensional covariance matrix with the Stein loss," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 1-17.
    16. Peter D. Hoff, 2009. "A hierarchical eigenmodel for pooled covariance estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 971-992, November.
    17. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    18. Konno, Yoshihiko, 2001. "Inadmissibility of the Maximum Likekihood Estimator of Normal Covariance Matrices with the Lattice Conditional Independence," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 33-51, October.
    19. Hashiguchi, Hiroki & Numata, Yasuhide & Takayama, Nobuki & Takemura, Akimichi, 2013. "The holonomic gradient method for the distribution function of the largest root of a Wishart matrix," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 296-312.
    20. Tsukuma, Hisayuki, 2008. "Admissibility and minimaxity of Bayes estimators for a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2251-2264, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:4:p:751-775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.