IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v62y1997i1p110-120.html
   My bibliography  Save this article

On a Conjecture of Krishnamoorthy and Gupta,

Author

Listed:
  • Perron, François

Abstract

We consider the problem of estimating the precision matrix ([Sigma]-1) under a fully invariant convex loss. Suppose that there exists a minimax constant risk estimator[Phi](say) for this problem. K. Krishnamoorthy and A. K. Gupta have proposed an operation which transforms this estimator into an orthogonally invariant estimator[Phi]* (say) and they have a conjecture saying that[Phi]* is minimax as well. This paper contains two parts. In the first part, we present counterexamples. In the second part, we elaborate a technique which can be used to prove that certain estimators are minimax. This technique is then applied successfully to some of the estimators proposed in the Krishnamoorthy and Gupta paper.

Suggested Citation

  • Perron, François, 1997. "On a Conjecture of Krishnamoorthy and Gupta, ," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 110-120, July.
  • Handle: RePEc:eee:jmvana:v:62:y:1997:i:1:p:110-120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91683-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haff, L. R., 1979. "An identity for the Wishart distribution with applications," Journal of Multivariate Analysis, Elsevier, vol. 9(4), pages 531-544, December.
    2. Sheena, Yo & Takemura, Akimichi, 1992. "Inadmissibility of non-order-preserving orthogonally invariant estimators of the covariance matrix in the case of Stein's loss," Journal of Multivariate Analysis, Elsevier, vol. 41(1), pages 117-131, April.
    3. Loh, Wei-Liem, 1991. "Estimating covariance matrices II," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 163-174, February.
    4. Perron, F., 1992. "Minimax estimators of a covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 43(1), pages 16-28, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsukuma, Hisayuki, 2016. "Estimation of a high-dimensional covariance matrix with the Stein loss," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 1-17.
    2. Tsai, Ming-Tien & Kubokawa, Tatsuya, 2007. "Estimation of Wishart mean matrices under simple tree ordering," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 945-959, May.
    3. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2011. "Modifying estimators of ordered positive parameters under the Stein loss," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 164-181, January.
    4. Besson, Olivier & Vincent, François & Gendre, Xavier, 2020. "A Stein’s approach to covariance matrix estimation using regularization of Cholesky factor and log-Cholesky metric," Statistics & Probability Letters, Elsevier, vol. 167(C).
    5. Tatsuya Kubokawa & M. S. Srivastava, 1999. ""Estimating the Covariance Matrix: A New Approach", June 1999," CIRJE F-Series CIRJE-F-52, CIRJE, Faculty of Economics, University of Tokyo.
    6. Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
    7. Tsai, Ming-Tien, 2007. "Maximum likelihood estimation of Wishart mean matrices under Löwner order restrictions," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 932-944, May.
    8. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Tsukuma, Hisayuki & Konno, Yoshihiko, 2006. "On improved estimation of normal precision matrix and discriminant coefficients," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1477-1500, August.
    10. Konno, Yoshihiko, 2001. "Inadmissibility of the Maximum Likekihood Estimator of Normal Covariance Matrices with the Lattice Conditional Independence," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 33-51, October.
    11. Sheena Yo & Gupta Arjun K., 2003. "Estimation of the multivariate normal covariance matrix under some restrictions," Statistics & Risk Modeling, De Gruyter, vol. 21(4), pages 327-342, April.
    12. Kubokawa, T. & Srivastava, M. S., 2003. "Estimating the covariance matrix: a new approach," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 28-47, July.
    13. Tatsuya Kubokawa & M. S. Srivastava, 2002. "Estimating the Covariance Matrix: A New Approach," CIRJE F-Series CIRJE-F-162, CIRJE, Faculty of Economics, University of Tokyo.
    14. Hara, Hisayuki, 2001. "Other Classes of Minimax Estimators of Variance Covariance Matrix in Multivariate Normal Distribution," Journal of Multivariate Analysis, Elsevier, vol. 77(2), pages 175-186, May.
    15. Konno, Yoshihiko, 2007. "Estimation of normal covariance matrices parametrized by irreducible symmetric cones under Stein's loss," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 295-316, February.
    16. Andrew F. Siegel & Artemiza Woodgate, 2007. "Performance of Portfolios Optimized with Estimation Error," Management Science, INFORMS, vol. 53(6), pages 1005-1015, June.
    17. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    18. K. Krishnamoorthy, 1991. "Estimation of a common multivariate normal mean vector," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(4), pages 761-771, December.
    19. Francesco Lautizi, 2015. "Large Scale Covariance Estimates for Portfolio Selection," CEIS Research Paper 353, Tor Vergata University, CEIS, revised 07 Aug 2015.
    20. Tsukada, Shin-ichi, 2014. "Asymptotic expansion for distribution of the trace of a covariance matrix under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 206-219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:62:y:1997:i:1:p:110-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.