Chi-Square Approximation for the Distribution of Individual Eigenvalues of a Singular Wishart Matrix
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Takemura, Akimichi & Sheena, Yo, 2005. "Distribution of eigenvalues and eigenvectors of Wishart matrix when the population eigenvalues are infinitely dispersed and its application to minimax estimation of covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 271-299, June.
- Butler, Ronald W. & Wood, Andrew T.A., 2005. "Laplace approximations to hypergeometric functions of two matrix arguments," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 1-18, May.
- Ryo Nasuda & Koki Shimizu & Hiroki Hashiguchi, 2023. "Asymptotic behavior of the distributions of eigenvalues for beta-Wishart ensemble under the dispersed population eigenvalues," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(22), pages 7840-7860, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Peter D. Hoff, 2009. "A hierarchical eigenmodel for pooled covariance estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 971-992, November.
- Daya K. Nagar & Raúl Alejandro Morán-Vásquez & Arjun K. Gupta, 2015. "Extended Matrix Variate Hypergeometric Functions and Matrix Variate Distributions," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2015, pages 1-15, January.
- I. M. Johnstone & B. Nadler, 2017. "Roy’s largest root test under rank-one alternatives," Biometrika, Biometrika Trust, vol. 104(1), pages 181-193.
- Hashiguchi, Hiroki & Numata, Yasuhide & Takayama, Nobuki & Takemura, Akimichi, 2013. "The holonomic gradient method for the distribution function of the largest root of a Wishart matrix," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 296-312.
- Sheena, Yo & Takemura, Akimichi, 2008. "Asymptotic distribution of Wishart matrix for block-wise dispersion of population eigenvalues," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 751-775, April.
- Sheena, Yo & Takemura, Akimichi, 2011. "Admissible estimator of the eigenvalues of the variance-covariance matrix for multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 801-815, April.
- Jerome R. Simons, 2023. "Inference on eigenvectors of non-symmetric matrices," Papers 2303.18233, arXiv.org, revised Apr 2023.
More about this item
Keywords
hypergeometric functions; laplace approximation; spiked covariance model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:6:p:921-:d:1360719. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.