IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v79y2001i1p33-51.html
   My bibliography  Save this article

Inadmissibility of the Maximum Likekihood Estimator of Normal Covariance Matrices with the Lattice Conditional Independence

Author

Listed:
  • Konno, Yoshihiko

Abstract

Lattice conditional independence (LCI) models introduced by S. A. Andersson and M. D. Perlman (1993, Ann. Statist.21, 1318-1358) have the pleasant feature of admitting explicit maximum likelihood estimators and likelihood ratio test statistics. This is because the likelihood function and parameter space for a LCI model can be factored into products of conditional likelihood functions and parameter spaces, where the standard multivariate techniques can be applied. In this paper we consider the problem of estimating the covariance matrices under LCI restriction in a decision theoretic setup. The Stein loss function is used in this study and, using the factorization mentioned above, minimax estimators are obtained. Since the maximum likelihood estimator has constant risk and is different from the minimax estimator, this shows that the maximum likelihood estimator under LCI restriction inadmissible. These results extend those obtained by W. James and C. Stein (1960, in "Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics, and Probability," Vol. 1, pp. 360-380, Univ. of California Press, Berkeley, CA) and D. K. Dey and C. Srinivasan (1985, Ann. Statist.13, 1581-1591) for estimating normal covariance matrices to the LCI models.

Suggested Citation

  • Konno, Yoshihiko, 2001. "Inadmissibility of the Maximum Likekihood Estimator of Normal Covariance Matrices with the Lattice Conditional Independence," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 33-51, October.
  • Handle: RePEc:eee:jmvana:v:79:y:2001:i:1:p:33-51
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91955-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. R. Cox & Nanny Wermuth, 1999. "Likelihood Factorizations for Mixed Discrete and Continuous Variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(2), pages 209-220, June.
    2. Sheena, Yo & Takemura, Akimichi, 1992. "Inadmissibility of non-order-preserving orthogonally invariant estimators of the covariance matrix in the case of Stein's loss," Journal of Multivariate Analysis, Elsevier, vol. 41(1), pages 117-131, April.
    3. Konno, Y., 1995. "Estimation of a Normal Covariance Matrix with Incomplete Data under Stein's Loss," Journal of Multivariate Analysis, Elsevier, vol. 52(2), pages 308-324, February.
    4. Andersson, Steen A. & Perlman, Michael D., 1991. "Lattice-ordered conditional independence models for missing data," Statistics & Probability Letters, Elsevier, vol. 12(6), pages 465-486, December.
    5. Andersson, S. A. & Perlman, M. D., 1995. "Unbiasedness of the Likelihood Ratio Test for Lattice Conditional Independence Models," Journal of Multivariate Analysis, Elsevier, vol. 53(1), pages 1-17, April.
    6. Perron, F., 1992. "Minimax estimators of a covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 43(1), pages 16-28, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Xiaoqian & Sun, Dongchu, 2005. "Estimation of the Cholesky decomposition of the covariance matrix for a conditional independent normal model," Statistics & Probability Letters, Elsevier, vol. 73(1), pages 1-12, June.
    2. Konno, Yoshihiko, 2007. "Estimation of normal covariance matrices parametrized by irreducible symmetric cones under Stein's loss," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 295-316, February.
    3. Sun, Dongchu & Sun, Xiaoqian, 2006. "Estimation of multivariate normal covariance and precision matrices in a star-shape model with missing data," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 698-719, March.
    4. Dongchu Sun & Xiaoqian Sun, 2005. "Estimation of the multivariate normal precision and covariance matrices in a star-shape model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 455-484, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatsuya Kubokawa & M. S. Srivastava, 1999. ""Estimating the Covariance Matrix: A New Approach", June 1999," CIRJE F-Series CIRJE-F-52, CIRJE, Faculty of Economics, University of Tokyo.
    2. Tsukuma, Hisayuki, 2016. "Estimation of a high-dimensional covariance matrix with the Stein loss," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 1-17.
    3. Kubokawa, T. & Srivastava, M. S., 2003. "Estimating the covariance matrix: a new approach," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 28-47, July.
    4. Tatsuya Kubokawa & M. S. Srivastava, 2002. "Estimating the Covariance Matrix: A New Approach," CIRJE F-Series CIRJE-F-162, CIRJE, Faculty of Economics, University of Tokyo.
    5. Hara, Hisayuki, 2001. "Other Classes of Minimax Estimators of Variance Covariance Matrix in Multivariate Normal Distribution," Journal of Multivariate Analysis, Elsevier, vol. 77(2), pages 175-186, May.
    6. Konno, Yoshihiko, 2007. "Estimation of normal covariance matrices parametrized by irreducible symmetric cones under Stein's loss," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 295-316, February.
    7. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2011. "Modifying estimators of ordered positive parameters under the Stein loss," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 164-181, January.
    8. Besson, Olivier & Vincent, François & Gendre, Xavier, 2020. "A Stein’s approach to covariance matrix estimation using regularization of Cholesky factor and log-Cholesky metric," Statistics & Probability Letters, Elsevier, vol. 167(C).
    9. Perron, François, 1997. "On a Conjecture of Krishnamoorthy and Gupta, ," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 110-120, July.
    10. Chang, Wan-Ying & Richards, Donald St.P., 2009. "Finite-sample inference with monotone incomplete multivariate normal data, I," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1883-1899, October.
    11. Jinfang Wang, 2010. "A universal algebraic approach for conditional independence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(4), pages 747-773, August.
    12. Ye, Ren-Dao & Wang, Song-Gui, 2009. "Improved estimation of the covariance matrix under Stein's loss," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 715-721, March.
    13. Takemura, Akimichi & Sheena, Yo, 2005. "Distribution of eigenvalues and eigenvectors of Wishart matrix when the population eigenvalues are infinitely dispersed and its application to minimax estimation of covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 271-299, June.
    14. Wu, Lang & Perlman, Michael D., 2000. "Testing lattice conditional independence models based on monotone missing data," Statistics & Probability Letters, Elsevier, vol. 50(2), pages 193-201, November.
    15. Richards, Donald St. P. & Yamada, Tomoya, 2010. "The Stein phenomenon for monotone incomplete multivariate normal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 657-678, March.
    16. Nanny Wermuth & Kayvan Sadeghi, 2012. "Sequences of regressions and their independences," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 215-252, June.
    17. Tsai, Ming-Tien & Kubokawa, Tatsuya, 2007. "Estimation of Wishart mean matrices under simple tree ordering," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 945-959, May.
    18. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    19. Hélène Massam & Erhard Neher, 1997. "On Transformations and Determinants of Wishart Variables on Symmetric Cones," Journal of Theoretical Probability, Springer, vol. 10(4), pages 867-902, October.
    20. Tsukuma, Hisayuki & Konno, Yoshihiko, 2006. "On improved estimation of normal precision matrix and discriminant coefficients," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1477-1500, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:79:y:2001:i:1:p:33-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.