Estimating the covariance matrix: a new approach
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sinha, Bimal Kumar, 1976. "On improved estimators of the generalized variance," Journal of Multivariate Analysis, Elsevier, vol. 6(4), pages 617-625, December.
- M. S. Srivastava & Tatsuya Kubokawa, 1999. "Improved Nonnegative Estimation of Multivariate Components of Variance," CIRJE F-Series CIRJE-F-38, CIRJE, Faculty of Economics, University of Tokyo.
- Sheena, Yo & Takemura, Akimichi, 1992. "Inadmissibility of non-order-preserving orthogonally invariant estimators of the covariance matrix in the case of Stein's loss," Journal of Multivariate Analysis, Elsevier, vol. 41(1), pages 117-131, April.
- Tatsuya Kubokawa & M. S. Srivastava, 1999. ""Estimating the Covariance Matrix: A New Approach", June 1999," CIRJE F-Series CIRJE-F-52, CIRJE, Faculty of Economics, University of Tokyo.
- Perron, F., 1992. "Minimax estimators of a covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 43(1), pages 16-28, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hisayuki Tsukuma & Tatsuya Kubokawa, 2014. "Unified Improvements in Estimation of a Normal Covariance Matrix in High and Low Dimesions," CIRJE F-Series CIRJE-F-937, CIRJE, Faculty of Economics, University of Tokyo.
- Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2016. "Unified improvements in estimation of a normal covariance matrix in high and low dimensions," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 233-248.
- Howlett, P.G. & Torokhti, A. & Pearce, C.E.M., 2007. "Optimal multilinear estimation of a random vector under constraints of causality and limited memory," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 869-878, October.
- Sun, Xiaoqian & Zhou, Xian, 2008. "Improved minimax estimation of the bivariate normal precision matrix under the squared loss," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 127-134, February.
- Kubokawa, Tatsuya & Tsai, Ming-Tien, 2006. "Estimation of covariance matrices in fixed and mixed effects linear models," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2242-2261, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tatsuya Kubokawa & M. S. Srivastava, 2002. "Estimating the Covariance Matrix: A New Approach," CIRJE F-Series CIRJE-F-162, CIRJE, Faculty of Economics, University of Tokyo.
- Tatsuya Kubokawa & M. S. Srivastava, 1999. ""Estimating the Covariance Matrix: A New Approach", June 1999," CIRJE F-Series CIRJE-F-52, CIRJE, Faculty of Economics, University of Tokyo.
- Tsukuma, Hisayuki, 2016. "Estimation of a high-dimensional covariance matrix with the Stein loss," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 1-17.
- Tsai, Ming-Tien & Kubokawa, Tatsuya, 2007. "Estimation of Wishart mean matrices under simple tree ordering," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 945-959, May.
- Konno, Yoshihiko, 2001. "Inadmissibility of the Maximum Likekihood Estimator of Normal Covariance Matrices with the Lattice Conditional Independence," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 33-51, October.
- Hara, Hisayuki, 2001. "Other Classes of Minimax Estimators of Variance Covariance Matrix in Multivariate Normal Distribution," Journal of Multivariate Analysis, Elsevier, vol. 77(2), pages 175-186, May.
- Konno, Yoshihiko, 2007. "Estimation of normal covariance matrices parametrized by irreducible symmetric cones under Stein's loss," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 295-316, February.
- Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2011. "Modifying estimators of ordered positive parameters under the Stein loss," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 164-181, January.
- Besson, Olivier & Vincent, François & Gendre, Xavier, 2020. "A Stein’s approach to covariance matrix estimation using regularization of Cholesky factor and log-Cholesky metric," Statistics & Probability Letters, Elsevier, vol. 167(C).
- Perron, François, 1997. "On a Conjecture of Krishnamoorthy and Gupta, ," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 110-120, July.
- Ye, Ren-Dao & Wang, Song-Gui, 2009. "Improved estimation of the covariance matrix under Stein's loss," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 715-721, March.
- Sanat Sarkar, 1991. "Stein-type improvements of confidence intervals for the generalized variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(2), pages 369-375, June.
- Takemura, Akimichi & Sheena, Yo, 2005. "Distribution of eigenvalues and eigenvectors of Wishart matrix when the population eigenvalues are infinitely dispersed and its application to minimax estimation of covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 271-299, June.
- Tsai, Ming-Tien, 2007. "Maximum likelihood estimation of Wishart mean matrices under Löwner order restrictions," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 932-944, May.
- Kubokawa, Tatsuya & Tsai, Ming-Tien, 2006. "Estimation of covariance matrices in fixed and mixed effects linear models," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2242-2261, November.
- Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Tsukuma, Hisayuki & Konno, Yoshihiko, 2006. "On improved estimation of normal precision matrix and discriminant coefficients," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1477-1500, August.
- Pensky, Marianna, 1999. "Nonparametric Empirical Bayes Estimation of the Matrix Parameter of the Wishart Distribution," Journal of Multivariate Analysis, Elsevier, vol. 69(2), pages 242-260, May.
- Sheena, Yo & Takemura, Akimichi, 2008. "Asymptotic distribution of Wishart matrix for block-wise dispersion of population eigenvalues," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 751-775, April.
- Oualkacha Karim & Labbe Aurelie & Ciampi Antonio & Roy Marc-Andre & Maziade Michel, 2012. "Principal Components of Heritability for High Dimension Quantitative Traits and General Pedigrees," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-27, January.
More about this item
Keywords
Covariance matrix Generalized variance Minimax estimation Improvement Decision theory Stein result Bartlett's decomposition;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:86:y:2003:i:1:p:28-47. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.