IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i3p542-554.html
   My bibliography  Save this article

From moments of sum to moments of product

Author

Listed:
  • Kan, Raymond

Abstract

We provide an identity that relates the moment of a product of random variables to the moments of different linear combinations of the random variables. Applying this identity, we obtain new formulae for the expectation of the product of normally distributed random variables and the product of quadratic forms in normally distributed random variables. In addition, we generalize the formulae to the case of multivariate elliptically distributed random variables. Unlike existing formulae in the literature, our new formulae are extremely efficient for computational purposes.

Suggested Citation

  • Kan, Raymond, 2008. "From moments of sum to moments of product," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 542-554, March.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:3:p:542-554
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00013-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schott, James R., 2003. "Kronecker product permutation matrices and their application to moment matrices of the normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 177-190, October.
    2. Magnus, J.R., 1979. "The expectation of products of quadratic forms in normal variables : The practice Statistica Neerlandica," Other publications TiSEM fe936fc3-c7db-4806-80b3-6, Tilburg University, School of Economics and Management.
    3. Jan R. Magnus, 1979. "The expectation of products of quadratic forms in normal variables: the practice," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 33(3), pages 131-136, September.
    4. Jan R. Magnus, 1986. "The Exact Moments of a Ratio of Quadratic Forms in Normal Variables," Annals of Economics and Statistics, GENES, issue 4, pages 95-109.
    5. Berkane, Maia & Bentler, P. M., 1986. "Moments of elliptically distributed random variates," Statistics & Probability Letters, Elsevier, vol. 4(6), pages 333-335, October.
    6. repec:adr:anecst:y:1986:i:4:p:05 is not listed on IDEAS
    7. Blacher, René, 2003. "Multivariate quadratic forms of random vectors," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 2-23, October.
    8. Jan R. Magnus, 1986. "The Exact Moments of a Ratio of Quadratic Forms in Normal Variables," Annals of Economics and Statistics, GENES, issue 4, pages 95-109.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baishuai Zuo & Chuancun Yin & Narayanaswamy Balakrishnan, 2020. "Explicit expressions for joint moments of $n$-dimensional elliptical distributions," Papers 2007.09349, arXiv.org, revised Aug 2020.
    2. Mutschler, Willi, 2015. "Note on Higher-Order Statistics for the Pruned-State-Space of nonlinear DSGE models," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113138, Verein für Socialpolitik / German Economic Association.
    3. Max Z. Li & Karthik Gopalakrishnan & Kristyn Pantoja & Hamsa Balakrishnan, 2021. "Graph Signal Processing Techniques for Analyzing Aviation Disruptions," Transportation Science, INFORMS, vol. 55(3), pages 553-573, May.
    4. Theo Dijkstra & Karin Schermelleh-Engel, 2014. "Consistent Partial Least Squares for Nonlinear Structural Equation Models," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 585-604, October.
    5. David Rossell & Oriol Abril & Anirban Bhattacharya, 2021. "Approximate Laplace approximations for scalable model selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 853-879, September.
    6. Russell Oliver & Sun Wei, 2024. "Using sums-of-squares to prove Gaussian product inequalities," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-13.
    7. Robert E. Gaunt, 2022. "The basic distributional theory for the product of zero mean correlated normal random variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(4), pages 450-470, November.
    8. Grant Hillier & Raymond Kan, 2021. "Moments of a Wishart Matrix," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 141-162, December.
    9. Kan, Raymond & Wang, Xiaolu, 2010. "On the distribution of the sample autocorrelation coefficients," Journal of Econometrics, Elsevier, vol. 154(2), pages 101-121, February.
    10. Mutschler, Willi, 2015. "Identification of DSGE models—The effect of higher-order approximation and pruning," Journal of Economic Dynamics and Control, Elsevier, vol. 56(C), pages 34-54.
    11. Song, Iickho & Lee, Seungwon, 2015. "Explicit formulae for product moments of multivariate Gaussian random variables," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 27-34.
    12. repec:nbp:nbpbik:v:47:y:2016:i:6:p:365-394 is not listed on IDEAS
    13. Grant Hillier & Raymond Kan & Xiaolu Wang, 2008. "Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors," CeMMAP working papers CWP14/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Hillier, Grant & Kan, Raymond & Wang, Xiaoulu, 2009. "Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors," Discussion Paper Series In Economics And Econometrics 918, Economics Division, School of Social Sciences, University of Southampton.
    15. Vignat, C., 2012. "A generalized Isserlis theorem for location mixtures of Gaussian random vectors," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 67-71.
    16. Hillier, Grant & Kan, Raymond & Wang, Xiaoulu, 2009. "Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors," Discussion Paper Series In Economics And Econometrics 0918, Economics Division, School of Social Sciences, University of Southampton.
    17. Christian Gische & Manuel C. Voelkle, 2022. "Beyond the Mean: A Flexible Framework for Studying Causal Effects Using Linear Models," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 868-901, September.
    18. Oh Kang Kwon & Stephen Satchell, 2020. "The Distribution of Cross Sectional Momentum Returns When Underlying Asset Returns Are Student’s t Distributed," JRFM, MDPI, vol. 13(2), pages 1-19, February.
    19. Łukasz Lenart & Agnieszka Leszczyńska-Paczesna, 2016. "Do market prices improve the accuracy of inflation forecasting in Poland? A disaggregated approach," Bank i Kredyt, Narodowy Bank Polski, vol. 47(5), pages 365-394.
    20. Seth Pruitt, 2012. "Uncertainty Over Models and Data: The Rise and Fall of American Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44, pages 341-365, March.
    21. Lucio Fernandez‐Arjona & Damir Filipović, 2022. "A machine learning approach to portfolio pricing and risk management for high‐dimensional problems," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 982-1019, October.
    22. Jiayu Lai & Xiaoyi Wang & Kaige Zhao & Shurong Zheng, 2023. "Block-diagonal test for high-dimensional covariance matrices," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 447-466, March.
    23. Edelmann, Dominic & Richards, Donald & Royen, Thomas, 2023. "Product inequalities for multivariate Gaussian, gamma, and positively upper orthant dependent distributions," Statistics & Probability Letters, Elsevier, vol. 197(C).
    24. Julia Adamska & Łukasz Bielak & Joanna Janczura & Agnieszka Wyłomańska, 2022. "From Multi- to Univariate: A Product Random Variable with an Application to Electricity Market Transactions: Pareto and Student’s t -Distribution Case," Mathematics, MDPI, vol. 10(18), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magnus, J.R. & Pesaran, B., 1990. "Evaluation Of Moment Of Quadratic Forms In Normal Variables," Papers 9021, Tilburg - Center for Economic Research.
    2. Kan, Raymond & Wang, Xiaolu, 2010. "On the distribution of the sample autocorrelation coefficients," Journal of Econometrics, Elsevier, vol. 154(2), pages 101-121, February.
    3. Song, Iickho & Lee, Seungwon, 2015. "Explicit formulae for product moments of multivariate Gaussian random variables," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 27-34.
    4. F. Javier Mencía & Enrique Sentana, 2004. "Estimation and Testing of Dynamic Models with Generalised Hyperbolic Innovations," Working Papers wp2004_0411, CEMFI.
    5. Long Qu & Tobias Guennel & Scott L. Marshall, 2013. "Linear Score Tests for Variance Components in Linear Mixed Models and Applications to Genetic Association Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 883-892, December.
    6. Valérie Mignon & Christophe Hurlin, 2005. "Une synthèse des tests de racine unitaire sur données de panel," Économie et Prévision, Programme National Persée, vol. 169(3), pages 253-294.
    7. Ahamada Ibrahim & Boutahar Mohamed, 2012. "Power of the KPSS test against shift in variance: a further investigation," Economics Bulletin, AccessEcon, vol. 32(1), pages 854-865.
    8. Vasnev, Andrey L., 2010. "Sensitivity of GLS estimators in random effects models," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1252-1262, May.
    9. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    10. Chen, Ye & Yu, Jun, 2015. "Optimal jackknife for unit root models," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 135-142.
    11. Javier Mencía & Enrique Sentana, 2012. "Distributional Tests in Multivariate Dynamic Models with Normal and Student-t Innovations," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 133-152, February.
    12. van Garderen, Kees Jan & Peter Boswijk, H., 2014. "Bias correcting adjustment coefficients in a cointegrated VAR with known cointegrating vectors," Economics Letters, Elsevier, vol. 122(2), pages 224-228.
    13. Yong Bao & Aman Ullah, 2009. "Expectation of Quadratic Forms in Normal and Nonnormal Variables with Econometric Applications," Working Papers 200907, University of California at Riverside, Department of Economics, revised Jun 2009.
    14. van der Genugten, B.B., 1992. "Density of the least squares estimator in the multivariate linear model with arbitrarily normal variables," Research Memorandum FEW 564, Tilburg University, School of Economics and Management.
    15. Paolella, Marc S., 2003. "Computing moments of ratios of quadratic forms in normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 313-331, March.
    16. Hashem Pesaran, M. & Yamagata, Takashi, 2008. "Testing slope homogeneity in large panels," Journal of Econometrics, Elsevier, vol. 142(1), pages 50-93, January.
    17. Poskitt, D.S. & Grose, Simone D. & Martin, Gael M., 2015. "Higher-order improvements of the sieve bootstrap for fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 188(1), pages 94-110.
    18. Marcus J. Chambers & Maria Kyriacou, 2018. "Jackknife Bias Reduction in the Presence of a Near-Unit Root," Econometrics, MDPI, vol. 6(1), pages 1-28, March.
    19. Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2012. "Testing for Granger non-causality in heterogeneous panels," Economic Modelling, Elsevier, vol. 29(4), pages 1450-1460.
    20. van der Genugten, B.B., 1992. "Density of the least squares estimator in the multivariate linear model with arbitrarily normal variables," Other publications TiSEM 743bba45-e7e0-4746-a6a6-e, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:3:p:542-554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.