IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2007.09349.html
   My bibliography  Save this paper

Explicit expressions for joint moments of $n$-dimensional elliptical distributions

Author

Listed:
  • Baishuai Zuo
  • Chuancun Yin
  • Narayanaswamy Balakrishnan

Abstract

Inspired by Stein's lemma, we derive two expressions for the joint moments of elliptical distributions. We use two different methods to derive $E[X_{1}^{2}f(\mathbf{X})]$ for any measurable function $f$ satisfying some regularity conditions. Then, by applying this result, we obtain new formulae for expectations of product of normally distributed random variables, and also present simplified expressions of $E[X_{1}^{2}f(\mathbf{X})]$ for multivariate Student-$t$, logistic and Laplace distributions.

Suggested Citation

  • Baishuai Zuo & Chuancun Yin & Narayanaswamy Balakrishnan, 2020. "Explicit expressions for joint moments of $n$-dimensional elliptical distributions," Papers 2007.09349, arXiv.org, revised Aug 2020.
  • Handle: RePEc:arx:papers:2007.09349
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2007.09349
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Iickho & Lee, Seungwon, 2015. "Explicit formulae for product moments of multivariate Gaussian random variables," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 27-34.
    2. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2018. "A multivariate tail covariance measure for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 27-35.
    3. Kan, Raymond, 2008. "From moments of sum to moments of product," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 542-554, March.
    4. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    2. Russell Oliver & Sun Wei, 2024. "Using sums-of-squares to prove Gaussian product inequalities," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-13.
    3. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    4. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    5. Antonio Parisi & B. Liseo, 2018. "Objective Bayesian analysis for the multivariate skew-t model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 277-295, June.
    6. M. Teimourian & T. Baghfalaki & M. Ganjali & D. Berridge, 2015. "Joint modeling of mixed skewed continuous and ordinal longitudinal responses: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2233-2256, October.
    7. Fang, B.Q., 2006. "Sample mean, covariance and T2 statistic of the skew elliptical model," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1675-1690, August.
    8. Azzalini, Adelchi & Browne, Ryan P. & Genton, Marc G. & McNicholas, Paul D., 2016. "On nomenclature for, and the relative merits of, two formulations of skew distributions," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 201-206.
    9. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.
    10. Ferreira, Jose T.A.S. & Steel, Mark F.J., 2007. "Model comparison of coordinate-free multivariate skewed distributions with an application to stochastic frontiers," Journal of Econometrics, Elsevier, vol. 137(2), pages 641-673, April.
    11. Loperfido, Nicola, 2008. "A note on skew-elliptical distributions and linear functions of order statistics," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3184-3186, December.
    12. Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    13. Joe, Harry & Li, Haijun, 2019. "Tail densities of skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 421-435.
    14. S. Rao Jammalamadaka & Tomasz J. Kozubowski, 2017. "A General Approach for Obtaining Wrapped Circular Distributions via Mixtures," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 133-157, February.
    15. Chuancun Yin, 2019. "Stochastic ordering of Gini indexes for multivariate elliptical random variables," Papers 1908.01943, arXiv.org, revised Sep 2019.
    16. Fung, Thomas & Seneta, Eugene, 2014. "Convergence rate to a lower tail dependence coefficient of a skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 62-72.
    17. Eling, Martin, 2014. "Fitting asset returns to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 45-56.
    18. Loperfido, Nicola, 2018. "Skewness-based projection pursuit: A computational approach," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 42-57.
    19. Vernic, Raluca, 2006. "Multivariate skew-normal distributions with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 413-426, April.
    20. Mondal, Sagnik & Genton, Marc G., 2024. "A multivariate skew-normal-Tukey-h distribution," Journal of Multivariate Analysis, Elsevier, vol. 200(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2007.09349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.