IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v83y2021i4p853-879.html
   My bibliography  Save this article

Approximate Laplace approximations for scalable model selection

Author

Listed:
  • David Rossell
  • Oriol Abril
  • Anirban Bhattacharya

Abstract

We propose the approximate Laplace approximation (ALA) to evaluate integrated likelihoods, a bottleneck in Bayesian model selection. The Laplace approximation (LA) is a popular tool that speeds up such computation and equips strong model selection properties. However, when the sample size is large or one considers many models the cost of the required optimizations becomes impractical. ALA reduces the cost to that of solving a least‐squares problem for each model. Further, it enables efficient computation across models such as sharing pre‐computed sufficient statistics and certain operations in matrix decompositions. We prove that in generalized (possibly non‐linear) models ALA achieves a strong form of model selection consistency for a suitably‐defined optimal model, at the same functional rates as exact computation. We consider fixed‐ and high‐dimensional problems, group and hierarchical constraints, and the possibility that all models are misspecified. We also obtain ALA rates for Gaussian regression under non‐local priors, an important example where the LA can be costly and does not consistently estimate the integrated likelihood. Our examples include non‐linear regression, logistic, Poisson and survival models. We implement the methodology in the R package mombf.

Suggested Citation

  • David Rossell & Oriol Abril & Anirban Bhattacharya, 2021. "Approximate Laplace approximations for scalable model selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 853-879, September.
  • Handle: RePEc:bla:jorssb:v:83:y:2021:i:4:p:853-879
    DOI: 10.1111/rssb.12466
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12466
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kan, Raymond, 2008. "From moments of sum to moments of product," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 542-554, March.
    2. Simon, Noah & Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2011. "Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i05).
    3. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    4. repec:dau:papers:123456789/5671 is not listed on IDEAS
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. David Rossell & Francisco J. Rubio, 2018. "Tractable Bayesian Variable Selection: Beyond Normality," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1742-1758, October.
    7. Valen E. Johnson & David Rossell, 2010. "On the use of non‐local prior densities in Bayesian hypothesis tests," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 143-170, March.
    8. Giacomo Zanella & Gareth Roberts, 2019. "Scalable importance tempering and Bayesian variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(3), pages 489-517, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Semken & David Rossell, 2022. "Specification analysis for technology use and teenager well‐being: Statistical validity and a Bayesian proposal," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1330-1355, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    2. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    3. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    4. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    5. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    6. Zhixuan Fu & Shuangge Ma & Haiqun Lin & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized Variable Selection for Multi-center Competing Risks Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 379-405, December.
    7. Kevin He & Yue Wang & Xiang Zhou & Han Xu & Can Huang, 2019. "An improved variable selection procedure for adaptive Lasso in high-dimensional survival analysis," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 569-585, July.
    8. Das Ujjwal & Ebrahimi Nader, 2018. "A New Method For Covariate Selection In Cox Model," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 297-314, June.
    9. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    10. Ujjwal Das & Nader Ebrahimi, 2018. "A New Method For Covariate Selection In Cox Model," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 297-314, June.
    11. Shi, Guiling & Lim, Chae Young & Maiti, Tapabrata, 2019. "Model selection using mass-nonlocal prior," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 36-44.
    12. Haixiang Zhang & Jian Huang & Liuquan Sun, 2022. "Projection‐based and cross‐validated estimation in high‐dimensional Cox model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 353-372, March.
    13. Lian, Heng & Li, Jianbo & Tang, Xingyu, 2014. "SCAD-penalized regression in additive partially linear proportional hazards models with an ultra-high-dimensional linear part," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 50-64.
    14. Wu, Tong Tong & He, Xin, 2012. "Coordinate ascent for penalized semiparametric regression on high-dimensional panel count data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 25-33, January.
    15. Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
    16. Zhang, Chun-Xia & Xu, Shuang & Zhang, Jiang-She, 2019. "A novel variational Bayesian method for variable selection in logistic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 1-19.
    17. Li, Jianbo & Gu, Minggao & Zhang, Riquan, 2013. "Variable selection for general transformation models with right censored data via nonconcave penalties," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 445-456.
    18. Shi, Guiling & Lim, Chae Young & Maiti, Tapabrata, 2019. "Bayesian model selection for generalized linear models using non-local priors," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 285-296.
    19. Yoonsuh Jung, 2018. "Multiple predicting K-fold cross-validation for model selection," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 197-215, January.
    20. Saverio Ranciati & Giuliano Galimberti & Gabriele Soffritti, 2019. "Bayesian variable selection in linear regression models with non-normal errors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 323-358, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:83:y:2021:i:4:p:853-879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.