IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v76y2022i4p450-470.html
   My bibliography  Save this article

The basic distributional theory for the product of zero mean correlated normal random variables

Author

Listed:
  • Robert E. Gaunt

Abstract

The product of two zero mean correlated normal random variables, and more generally the sum of independent copies of such random variables, has received much attention in the statistics literature and appears in many application areas. However, many important distributional properties are yet to be recorded. This review paper fills this gap by providing the basic distributional theory for the sum of independent copies of the product of two zero mean correlated normal random variables. Properties covered include probability and cumulative distribution functions, generating functions, moments and cumulants, mode and median, Stein characterisations, representations in terms of other random variables, and a list of related distributions. We also review how the product of two zero mean correlated normal random variables arises naturally as a limiting distribution, with an example given for the distributional approximation of double Wiener‐Itô integrals.

Suggested Citation

  • Robert E. Gaunt, 2022. "The basic distributional theory for the product of zero mean correlated normal random variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(4), pages 450-470, November.
  • Handle: RePEc:bla:stanee:v:76:y:2022:i:4:p:450-470
    DOI: 10.1111/stan.12267
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12267
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12267?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kan, Raymond, 2008. "From moments of sum to moments of product," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 542-554, March.
    2. Robert E. Gaunt, 2021. "Stein’s method and the distribution of the product of zero mean correlated normal random variables," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(2), pages 280-285, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Seijas-Macias & Amílcar Oliveira & Teresa A. Oliveira, 2023. "A New R-Function to Estimate the PDF of the Product of Two Uncorrelated Normal Variables," Mathematics, MDPI, vol. 11(16), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Russell Oliver & Sun Wei, 2024. "Using sums-of-squares to prove Gaussian product inequalities," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-13.
    2. Antonio Seijas-Macias & Amílcar Oliveira & Teresa A. Oliveira, 2023. "A New R-Function to Estimate the PDF of the Product of Two Uncorrelated Normal Variables," Mathematics, MDPI, vol. 11(16), pages 1-13, August.
    3. Max Z. Li & Karthik Gopalakrishnan & Kristyn Pantoja & Hamsa Balakrishnan, 2021. "Graph Signal Processing Techniques for Analyzing Aviation Disruptions," Transportation Science, INFORMS, vol. 55(3), pages 553-573, May.
    4. Łukasz Lenart & Agnieszka Leszczyńska-Paczesna, 2016. "Do market prices improve the accuracy of inflation forecasting in Poland? A disaggregated approach," Bank i Kredyt, Narodowy Bank Polski, vol. 47(5), pages 365-394.
    5. Seth Pruitt, 2012. "Uncertainty Over Models and Data: The Rise and Fall of American Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44, pages 341-365, March.
    6. Theo Dijkstra & Karin Schermelleh-Engel, 2014. "Consistent Partial Least Squares for Nonlinear Structural Equation Models," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 585-604, October.
    7. repec:nbp:nbpbik:v:47:y:2016:i:6:p:365-394 is not listed on IDEAS
    8. Lucio Fernandez‐Arjona & Damir Filipović, 2022. "A machine learning approach to portfolio pricing and risk management for high‐dimensional problems," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 982-1019, October.
    9. Grant Hillier & Raymond Kan & Xiaolu Wang, 2008. "Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors," CeMMAP working papers CWP14/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Mutschler, Willi, 2015. "Identification of DSGE models—The effect of higher-order approximation and pruning," Journal of Economic Dynamics and Control, Elsevier, vol. 56(C), pages 34-54.
    11. Vignat, C., 2012. "A generalized Isserlis theorem for location mixtures of Gaussian random vectors," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 67-71.
    12. Mutschler, Willi, 2015. "Note on Higher-Order Statistics for the Pruned-State-Space of nonlinear DSGE models," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113138, Verein für Socialpolitik / German Economic Association.
    13. Song, Iickho & Lee, Seungwon, 2015. "Explicit formulae for product moments of multivariate Gaussian random variables," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 27-34.
    14. Hillier, Grant & Kan, Raymond & Wang, Xiaoulu, 2009. "Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors," Discussion Paper Series In Economics And Econometrics 0918, Economics Division, School of Social Sciences, University of Southampton.
    15. Christian Gische & Manuel C. Voelkle, 2022. "Beyond the Mean: A Flexible Framework for Studying Causal Effects Using Linear Models," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 868-901, September.
    16. David Rossell & Oriol Abril & Anirban Bhattacharya, 2021. "Approximate Laplace approximations for scalable model selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 853-879, September.
    17. Jiayu Lai & Xiaoyi Wang & Kaige Zhao & Shurong Zheng, 2023. "Block-diagonal test for high-dimensional covariance matrices," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 447-466, March.
    18. Edelmann, Dominic & Richards, Donald & Royen, Thomas, 2023. "Product inequalities for multivariate Gaussian, gamma, and positively upper orthant dependent distributions," Statistics & Probability Letters, Elsevier, vol. 197(C).
    19. Julia Adamska & Łukasz Bielak & Joanna Janczura & Agnieszka Wyłomańska, 2022. "From Multi- to Univariate: A Product Random Variable with an Application to Electricity Market Transactions: Pareto and Student’s t -Distribution Case," Mathematics, MDPI, vol. 10(18), pages 1-29, September.
    20. Baishuai Zuo & Chuancun Yin & Narayanaswamy Balakrishnan, 2020. "Explicit expressions for joint moments of $n$-dimensional elliptical distributions," Papers 2007.09349, arXiv.org, revised Aug 2020.
    21. Grant Hillier & Raymond Kan, 2021. "Moments of a Wishart Matrix," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 141-162, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:76:y:2022:i:4:p:450-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.